
Master’s Thesis

Computer Science

Thesis no: MCS-2013-09

Month Year

School of Computing

Blekinge Institute of Technology

SE – 371 79 Karlskrona

Sweden

This thesis is submitted to the School of Computing at Blekinge Institute of Technology in

partial fulfillment of the requirements for the degree of Master of Science in Computer Science.

The thesis is equivalent to 20 weeks of full time studies.

Contact Information:

Author(s):

Ali Raza Fayyaz
Address: lindblomsvagen Ronneby

E-mail: ali.raza368@gmail.com

Madiha Munir

Address: lindblomsvagen Ronneby

E-mail: mmadihamunir@gmail.com

University advisor(s):

Bengt Carlsson, PHD

School of Computing

Performance Evaluation of PHP

Frameworks (CakePHP and CodeIgniter)

in relation to the Object-Relational

Mapping, with respect to Load Testing

 Ali Raza Fayyaz & Madiha Munir

School of Computing

Blekinge Institute of Technology

SE – 371 79 Karlskrona

Sweden

Internet : www.bth.se/com

Phone : +46 455 38 50 00

Fax : +46 455 38 50 57

mailto:ali.raza368@gmail.com

ABSTRACT

Context

Information technology is playing an important role in creating innovation in business. Due

to increase in demand of information technology, web development has become an important

field. PHP is an open source language, which is widely used in web development. PHP is

used to develop dynamic web pages and it has the ability to connect with database. PHP has

some good features i.e. cross platform compatibility, scalability, efficient execution and is an

open source technology. These features make it a good choice for developers to choose PHP

for web development. The maintenance of an application becomes difficult and performance

being considerably reduced, if PHP is to be used without using its frameworks. To resolve

these issues, different frameworks have been introduced by web development communities

on the internet. These frameworks are based on Model, View, Controller design pattern.

These frameworks provide, different common functionalities and classes in the form of

helpers, components, and plug-in to reduce the development time. Due to these features like

robustness, scalability, maintainability and performance, these frameworks are mostly used

for web development in PHP, with performance being considered the most important factor.

Objectives

The objective of this thesis is to compare and analyze the affect of data abstraction layer

(ORM) on the performance of two PHP frameworks. These two frameworks are CakePHP

and CodeIgniter. CAKEPHP has built-in support of object-relational mapping (ORM) but

CodeIgniter has no built-in support of object-relational mapping (ORM). We considered load

testing and stress testing to measure the performance of these two frameworks.

Methods

We performed the experiment to show the performance of CakePHP (with ORM) and

CodeIgniter (no ORM) frameworks. We developed two applications in both the PHP

frameworks, with the same scope and design and measured the performance of these

applications, with respect to load testing, with automated testing tool. The results have been

obtained by testing the performance of both the applications on local and live servers.

Results

After analyzing the null hypothesis with T-test, the results showed that there is not much of a

difference, as per as the performance of CAKEPHP and CodeIgniter was concerned, with

the respect to response time on a live server. CodeIgniter had better performance with

respect to throughput on live server. On local server CodeIgniter performed clearly better

than CAKEPHP framework with respect to response time and throughput.

Conclusions

After analyzing the results we concluded that CodeIgniter is useful for small and medium

sized applications. But CAKEPHP is good for large and enterprise level applications, as in

stress conditions the CAKEPHP performed better than CodeIgniter on both local and live

environment.

Keywords: Model View and Control, PHP, Page Load

Time, Stress Testing,

 ii

ACKNOWLEDGMENTS

We would like to thank all those who were involved in our thesis work and contributed with

advice and helpful insight.

We would like to thank to our supervisor Bengt Carlsson. He has been very kind and

provided us continuous guidelines and support throughout the study. He arranged weekly

meetings in the start and gave continuous feedback and comments which was useful to

improve the quality of our thesis document.

Special thanks to our parents and families because their prayers and love was a source of

inspiration, support and relief for us. Thanks to shayan solutions who provided us live server

access to host our web applications and test it.

Ali Raza and Madiha

 iii

Table of Contents

PERFORMANCE EVALUATION OF PHP FRAMEWORKS (CAKEPHP AND

CODEIGNITER) IN RELATION TO THE OBJECT-RELATIONAL MAPPING, WITH

RESPECT TO LOAD TESTING ...I

ABSTRACT ...I

1 INTRODUCTION ... 1

1.1 TECHNICAL TERMINOLOGIES AND DEFINITIONS .. 1
1.1.1 Server-side Scripting VS. Client-side scripting languages ... 1
1.1.2 PHP .. 2
1.1.3 Content Management Systems .. 3
1.1.4 Design Patterns .. 3
1.1.5 Model View Controller (MVC) ... 3
1.1.6 CakePHP .. 4
1.1.7 CodeIgniter ... 5
1.1.8 Object-relational Mapping ... 6

2 BACKGROUND AND RELATED WORK .. 8

2.1 PURPOSE .. 9
2.2 PROBLEM DOMAIN ... 9
2.3 AIMS AND OBJECTIVES .. 9
2.4 RESEARCH QUESTIONS .. 10
2.5 RESEARCH METHODOLOGY ... 10

3 THEORETICAL WORK .. 11

3.1 PERFORMANCE ... 11
3.2 PERFORMANCE TESTING .. 11
3.3 TYPES OF PERFORMANCE TESTING ... 11

3.3.1 Load testing .. 12
3.3.2 Stress testing ... 12
3.3.3 Capacity testing .. 12

4 EMPIRICAL EVALUATION .. 13

4.1 EXPERIMENT DEFINITION... 13
4.1.1 Experiment Explanation ... 13

4.2 EXPERIMENT PLANNING .. 19
4.2.1 Hypothesis Formulation ... 19
4.2.2 Experiment Variables ... 19

4.3 DESIGN EXPERIMENT ... 20
4.3.1 General Design Principles .. 20
4.3.2 Experiment Design Type ... 20
4.3.3 Experiment Instrumentation.. 21
4.3.4 Experiment validity evaluation ... 21
4.3.5 Data Sets ... 22

5 RESULTS AND ANALYSIS... 24

5.1 DESCRIPTIVE STATISTICS ... 24
5.1.1 Data analysis on local server ... 24

5.1 HYPOTHESIS TESTING .. 27
5.1.1 T-test on response time of CAKEPHP and CodeIgniter ... 28
5.1.2 T-test on throughput of CAKEPHP and CodeIgniter ... 28
5.1.3 Data analysis on live server .. 28

file:///C:/Users/Madiha/Dropbox/Thesis1/Thesis/THESIS%20DRAFT/dv2512%20Ali%20Raza%20Fayyaz%20&%20Madiha%20Munir-v-1.9(with%20tracking).doc%23_Toc370897690
file:///C:/Users/Madiha/Dropbox/Thesis1/Thesis/THESIS%20DRAFT/dv2512%20Ali%20Raza%20Fayyaz%20&%20Madiha%20Munir-v-1.9(with%20tracking).doc%23_Toc370897690
file:///C:/Users/Madiha/Dropbox/Thesis1/Thesis/THESIS%20DRAFT/dv2512%20Ali%20Raza%20Fayyaz%20&%20Madiha%20Munir-v-1.9(with%20tracking).doc%23_Toc370897690

 iv

5.2 HYPOTHESIS TESTING .. 30
5.2.1 T-test on response time of CAKEPHP and CodeIgniter ... 31
5.2.2 T-test on throughput of CAKEPHP and CodeIgniter ... 31

5.3 RESULTS SUMMARY ... 31

6 DISCUSSION ... 32

7 CONCLUSION AND FUTURE WORK ... 34

8 REFERENCES ... 35

9 APPENDIX ... 38

9.1 SOURCE CODE OF APPLICATIONS .. 38
9.1.1 Source code of CAKEPHP .. 38
9.1.2 Source code of CodeIgniter .. 38

9.2 TEST RESULTS ... 38
9.3 T-TESTING.. 46

9.3.1 T-testing on local server ... 46
9.3.2 T-testing on live server ... 47

 v

List of Figures

Figure 1.1: Typical Flow of PHP .. 2
Figure 1.2: MVC ... 4
Figure 1.3: How CakePHP makes use of MVC structure ... 5
Figure 1.4: How the data flows in the system of CodeIgniter .. 6
Figure 4.1: CodeIgniter Blog .. 14
Figure 4.2: CakePHP Blog ... 15
Figure 4.3: Test Plan in JMETER ... 17
Figure 5.1: Average response time between CakePHP and CodeIgniter on local server 26
Figure 5.2: Throughput between CakePHP and CodeIgniter on local server 27
Figure 5.3: Average response Time between CakePHP and CodeIgniter on live server 29
Figure 5.4: Throughput between CakePHP and CodeIgniter on live server 30

file:///C:/Users/Madiha/Dropbox/Thesis1/Thesis/THESIS%20DRAFT/dv2512%20Ali%20Raza%20Fayyaz%20&%20Madiha%20Munir-v-1.9(with%20tracking).doc%23_Toc370897749

 vi

List of Tables

Table 4.1: Test Plan to test application ... 18
Table 4.2: Treatments to test performance ... 21
Table 4.3: Datasets on local server ... 23
Table 5.1: Results of CakePHP on local server .. 24
Table 5.2: Results of CodeIgniter on local server .. 25
Table 5.3: Results of CakePHP on live server .. 29
Table 5.4: Results of CodeIgniter on live server .. 29
Table 5.5: Results comparison for Normal conditions ... 31
Table 5.6: Results comparison for stress conditions ... 31
Table 9.1: CakePHP Dataset for local server ... 40
Table 9.2: CodeIgniter Dataset for local server .. 43
Table 9.3: CakePHP Dataset on live server .. 44
Table 9.4: CodeIgniter Dataset for live server .. 45
Table 9.5: T-Test of CakePHP and CodeIgniter on local server .. 46
Table9.6: T-Test on Throughput of CakePHP and CodeIgniter on local server..................... 46
Table 9.7: T-Test of CakePHP and CodeIgniter on live server .. 47
Table 9.8: T-Test of CakePHP and CodeIgniter on live server .. 47

 1

1 INTRODUCTION

Nowadays internet has become more popular due to the increase in number of users, for its

usage in every business. Internet has become the need of every field of life and our day to

day activities are dependent upon the internet. Internet is used in the form of web

applications and these applications are used to pay utility bills, social networking, emails,

communication, online shopping, online transactions etc. These web applications are

developed in different languages like EJB (Enterprise Java Beans), PHP (Hypertext

preprocessor), ASP.NET and Ruby on Rails[33].

Due to the rapid growth of information technology and its importance, for almost every kind

of business, the web development has become a popular field. Increase in demand of web

development has brought the high demand of efficiency, reliability, maintainability and

scalability. PHP has features of intuitive, scalability, efficient execution, open source, cross

platform compatibility and its supports for SQL, to connect and manipulate data in

databases. PHP is widely used for the web application development [1].

PHP is a server side scripting language for web development, which is used for making

dynamic and interactive web pages. During the development with simple PHP, business

logic is mixed with database queries and presentation markups. Due to mixture of this

development mode, the maintenance and scalability of the application becomes difficult [1].

PHP has brought different development frameworks (CAKEPHP, CodeIgniter, Yii,

Symfony) to solve this issue [18]. These PHP frameworks are based on Model, View and

Controller (MVC) design pattern. MVC separates the application into three different layers,

Model, View and Controller. In MVC design pattern, model is data access layer and this

layer communicates with a database, which obtains data from databases. View is a

presentation layer and this layer is responsible for rendering information on the front end

(browser) and Controller is the central part which communicates with both Model and View.

The Controller takes the data from the Model, process this data and sends it to the View to

render it on to the browser. The Controller contains the business logic [1] [2] [3] [4] [5].

MVC is used to increase the reusability of the code and decrease the coupling of the data

description. Using MVC the code maintainability and scalability becomes easy [11].

Due to increasing popularity of web applications, the performance of web application is

considered the most important factor. Because the users are no longer passive web

consumers but they are active contributors of web, so a poor performance of web application

distract the users [34]. Basically PHP performance is based on PHP version in which version

application is developed, web server environment and system coding complexity [33]. It

means by web-server configurations and adopting better programming practices, we can

increase the performance of the web application. But, the main focus of PHP frameworks is

to make the development of websites faster and make them perform better. This functionality

makes these frameworks popular among the developers, who want to make a fast demo page

for a new project.

1.1 Technical Terminologies and Definitions
In this section we will describe technical terms and definitions. This will help the reader to

understand the ongoing discussion about the topic.

1.1.1 Server-side Scripting VS. Client-side scripting languages
Server-side scripting is about "programming" the behavior of the server. This is

called server-side scripting or server scripting [37].

 2

Server-side script can do:

 Dynamically edit, change or add any content to a Web page

 Respond to user queries or data submitted from HTML forms

 Access any data or databases and return the result to a browser

 Customize a Web page to make it more useful for individual users

 Provide security since your server code cannot be viewed from a browser

 Client-side scripting is about "programming" the behavior of the browser. This is called

client-side scripting or client scripting. This programming language executed on client-side

by the browser. Client-side scripts are usually embedded in HTML files or in separate files.

These scripts contain instructions for the browser to perform actions according to user’s

input. Client-side scripting is used to provide validation, detect visitor’s browsers, create

cookies etc [36].

Basically client (browser) sends a request to the server for an html file and server

returns the file to the browser. If the file contains the server-side script, then initially

script is executed on server and server returns the file in the plain html form [37].

1.1.2 PHP
PHP stands for PHP: Hypertext Preprocessor and was born in 1995. PHP is an

HTML-embedded scripting language. Most of its syntax is borrowed from C, Java and

Perl with a couple of unique PHP-specific features [22]. One of the PHP feature is the

ease for developers to connect and manipulate the database. There are many

advantages of PHP language, for example performance, scalability, open source,

portability etc. [2]. The goal of language is to allow web developers to write

dynamically generated web pages quickly. The founder of PHP, Rasmus Lerdorf, used

Perl to create PHP, because of massive amount of code needed to code in Perl. The

biggest advantage of PHP over Perl is that PHP was designed for scripting for web,

while Perl was designed to do a lot more. PHP is also easier to integrate into existing

HTML than Perl.

Flow of PHP is shown in the following figure (Fig 1.1):

1. Client sends requests to Script by typing a URL.

2. Script processes the data and sends request to the database directly.

3. Script receives the output from the database and processes the data.

4. Scripts produce the output and forward the data to the client.

 4 2

 4 2

 3 Database

 1

Figure 1.1: Typical Flow of PHP

Client Script

 3

1.1.3 Content Management Systems
There are also some Content Management Systems (CMSs) available in PHP

language. CMSs are software applications which are used for creating, editing,

publishing and managing content. These contents are saved in database. CMSs are

usually used by new and media organizations, e-commerce systems, broadcasting and

film industry, where contents are more important [12]. CMS takes care of almost all

the contents of the sites. It separates content from presentation layer. Contents are

fetched from database and presented on browser with some styles [6].

1.1.4 Design Patterns
A design pattern is the description of the solution to the common problem. It can

be seen as a template to solve a problem which occurs in different situations. A design

pattern can be reused in different applications. It is not a code reuse although code can

be created from design pattern. Design pattern specify the relationship and interaction

between the classes or objects. Design pattern describes the solution for the particular

type of problem [39].

Design pattern consists of following three parts.

Problem/Requirement

To create a design pattern, we need to go through analysis design of the

application. In this section the requirements are gathered for the problem which we

want to solve. This problem is common problem which can occur in more than one

application.

Forces

In this section technologies are defined, which helps and guides to create the

solution.

Solution

In this section the design is created for design pattern. This section describes how

to write the code to solve the problem. This section may contains class diagrams,

sequence diagrams or whatever is needed to describe, how to write the code to solve

the problem.

1.1.5 Model View Controller (MVC)
Model View Controller (MVC) is the type of design pattern. Most of the PHP

frameworks and content management systems are based on MVC design pattern. MVC

separates the application into three different layers, Model, View and Controller which

makes the application very light. New features can easily be added in MVC based

application. The layout of application can be easily changed. Due to modular and

separate design, the developers and designer can work simultaneously on the

application. It provides the facility to user to make changes in one part without

affecting other parts [38].

MVC design pattern can be explained with the following image.

 4

 View Selection

 User Gestures

 View Selection

Method Invocation

Events

 Figure 1.2: MVC

1.1.6 CakePHP

CakePHP is a MVC based framework and was released in 2005, it is written in

PHP but inspired by Ruby on Rails. Ruby is a cross-platform interpreted language.

Rails is a web development framework which runs on the Ruby programming

language. Ruby on rails also uses MVC design pattern. CakePHP uses well known

software engineering concepts and software design patterns as convention over

configuration, Model View Controller, active records, association data mapping and

front controller [23].

 CakePHP has some good features i.e. no configurations, clean MVC conventions,

code generation and scaffolding features, security for SQL injections preventions,

input data validation and form tampering protection which helps to keep applications

clean, safe and secure [8]. For database security, CakePHP has a built in database

abstraction layer. This layer is called object-relational mapping (ORM), which makes

database interaction very easy and secure.

CakePHP enforces the MVC structure for your web application. Basically it

effectively separates typical operations into specific areas. Models are used for only

database interactions. Views are used only for rendering output to browser. Controllers

for all the commands, scripts for input and program flow. In CakePHP the client

request is processed as follows.

1. The client sends a page request to the application, either by typing a URL or by

clicking a link of some kind. By convention, a typical URL is usually structured like

this:http://{Domain}.com/{Application}/{Controller}/{Action}/{Parameter 1, etc.}

2. The dispatcher script parses the URL structure and determines which controller

to execute. It also passes parameters along any actions to the controller.

State

Query

State

Change Change

Notification

Model

 Encapsulates application state

 Responds to state queries

 Exposes application functionality

 Notifies views of changes

Controller

 Defines application behavior

 Maps user action to model updates

 Selects view for response

 One for each functionality

View

 Renders the model

 Requests update from models

 Sends user gestures to controller

 Allows controller to select view

 5

3. The function in the controller may need to handle more data than just the

parameters forwarded by the dispatcher. It will send database requests to the model

script.

4. The model script determines how to interact with the database using the requests

submitted by the controller. It may run queries with the database and do all sorts of

handy data-sorting instructions.

5. Database inserts or pulls data from database tables by running SQL queries sent

by the model and make data available for model.

6. Once the model has pulled any data from or sent data to the database, it returns

its output to the controller.

7. The controller processes the data and outputs to the view file.

8. The view adds any design or display data to the controller output and sends its

output to the client’s browser.

 4

 5

 Database

 6

 8 7 3

 1 2

Figure 1.3: How CakePHP makes use of MVC structure

1.1.7 CodeIgniter

CodeIgniter is also MVC based PHP framework, was written by Rick Ellis.

CodeIgniter framework has some distinct features i.e. no restrictive coding rules, no

need to learn template language, small but comprehensive libraries and thorough

documentation. These features are suitable for small and medium sized application. In

CodeIgniter, there is no database abstraction layer like object-relational mapping

(ORM) in CAKEPHP. Due to absence of ORM in CodeIgniter framework, the

database communication becomes complex and insecure [9][21]. In CodeIgniter the

client request is processed is as follows.

1. The index.php serves as the front controller, initializing the base resources needed to

run CodeIgniter.

2. The Router examines the HTTP request to determine what should be done with it.

3. If a cache file exists, it is sent directly to the browser, bypassing the normal system

execution.

Client

Dispatcher Controller

Model View

 6

4. Security. Before the application controller is loaded, the HTTP request and any user

submitted data is filtered for security.

5. The Controller loads the model, core libraries, helpers, and any other resources

needed to process the specific request.

6. The finalized View is rendered then sent to the web browser to be seen. If caching is

enabled, the view is cached first so that on subsequent requests it can be served.

Figure 1.4: How the data flows in the system of CodeIgniter

1.1.8 Object-relational Mapping

Object-relational mapping (ORM) in computer software is

a programming technique for converting data between incompatible type

systems in object-oriented programming languages [40]. The key feature of ORM is to

bind an object to its data in the database by using mapping. Mapping defines the

relationship of an object and its properties and behavior with one or more tables in the

database, in such a way that object does not need to know anything about the database

and database does not need to know anything about the data structured in the

application. ORM takes care of the conversion from object to relation and relation to

object.

In relational database it is hard to maintain relationship between different tables

even for mid-sized PHP applications, particularly multiple level of relationships are

involved among database tables. Because complex SQL queries are needed to fetch,

insert, update and delete the data. Due to ORM, the database relationships are handled

very easily, because ORM helps to define relations among the database tables through

association. These associations are defined in the models, according to the

relationships among the tables in the database. After defining these associations ORM

helps to retrieve, save, update and delete data from different database tables with ease

and simplicity. There is no need to write complex SQL queries to join tables. We just

need to call the main table; the data from related tables will be fetched automatically.

ORM also apply SQL injections in SQL queries and protect database from string

attacks. ORM makes application communication with database very easy and simple.

It reduces the development time and makes code clean and simple. There are some

benefits of using ORM in the framework.

1) ORM increases the overall productivity of the application. It automatically

generates the code for the data access depending upon the data model defined

Index.php

Routing

Caching

Security

View

Application

Controller

Drivers

Models

Libraries

Helpers

Packages

Scripts

http://en.wikipedia.org/wiki/Computer_programming
http://en.wikipedia.org/wiki/Type_system
http://en.wikipedia.org/wiki/Type_system
http://en.wikipedia.org/wiki/Object-oriented

 7

in the application. It automatically applies the security for data access. It

significantly reduces the development time and the code to access database.

2) The use of ORM increases the code reusability. The code written for data

access for one application can be reused to other application.

3) ORM increases the application maintainability, because the code generated by

ORM for data access need not to be tested. We just need to test that code is

working according to our requirements. It is presumed to be stable and well

tested.

Beside the above benefits of the ORM in the frameworks, there are some drawbacks

of it. The data access code generated by ORM is more complex than simple SQL

queries, because ORM is designed to handle different data usage scenarios and apply

security on the code. It automatically generates complex un-necessary code for some

scenarios, which can affect the performance the application. Because the execution

of complex code takes more time, which can affect the performance for some

scenarios. The frameworks without ORM, has to write complex join queries to fetch

data from different related tables and data access code is protected manually, which

increases the code size and complexity. It is difficult to maintain application without

using ORM. Beside these drawbacks, the application does not need to execute un-

necessary extra code to generate code for data access.

 8

2 BACKGROUND AND RELATED WORK

As mentioned above, the performance of the web application is considered very important.

Similar work has been done to measure the performance of web applications in different

studies.

S.Kaur el al. [16] presented methodology for attaining high availability to the demands of the

web clients. In order to improve in response time of web services, during peak hours

dynamic allocation of host nodes has been used in this research work. To achieve this

objective, LAMP platform is used which are Linux, Apache, MySQL, and PHP. LAMP is

used to increase the quality of product by using open source software. In this paper

homogenous node has been considered for simulation environment.

Maria del Pilar Salas Zarate el al. [14] discussed the best practices in different frameworks

like JSF, Ruby on Rails, Struts, CakePHP, Lift. CakePHP also showed the same performance

like other frameworks but Lift showed best results for web development. Analysis presented

in this paper revealed that Lift is a new and powerful Framework. And Lift offers more

features for developing Web applications than others frameworks. With the usage of these

best practices, Web applications were developed in an interactive, intuitive and secure way,

improving the development effort and reducing the development time

Raúl Peña-Ortiz el al. [35] measured the performance of the web server. They explored that

how web server’s performance changes with the dynamic workload on web application.

They developed typical e-commerce website and reproduced different user’s dynamic

behaviors on website. They calculated web server performance using two different

parameters i.e. response time and CPU utilization and compared it with traditional workload

approaches. The results showed that dynamic workload put more stress on the web server

rather than the using traditional workload. Results showed that CPU utilization increased

20% and response time decreased 40% to 50%, when different user’s dynamic behaviors

have reproduced on the website.

Pushpendra Kumar Singh el al. [33] has created web application i.e. online books mart by

using the frameworks of PHP 5.3.0 and ASP.NET 3.5. They calculated and analyzed the web

application performance by performing different automated test cases and concluded that

ASP.NET performed slightly better than PHP in small scale application and there were

mixed results of performance between PHP and ASP.NET in large scale applications. PHP

showed better performance in database access.

Savan K Patel el al. [6] has compared the performance of different PHP content management

systems (Joomla. Drupal and WordPress). To evaluate the performance of these Content

Management Systems (CMS) pages had been hosted on local and live server. From the

results of local server he concluded that Drupal is the best choice for informative websites,

Joomla is good for fast response and multiple objects and WordPress is good for caching

pages. In live server WordPress performed best in all areas but Joomla performed better after

caching the page and Drupal performed better for informative websites.

In these studies the performance of PHP content management systems, web server

performance by producing dynamic workload on web site developed in PHP and the

performance of PHP website, has been compared with ASP.NET website in general. In these

studies, performance has been measured on the basis of the response time of web page and

page load time, but so far the work relating to PHP framework’s performance, has not been

done as of yet. There are different PHP MVC based frameworks ,that are available but

CAKEPHP and CodeIgniter frameworks are more widely used, for web application

 9

development, due to some notable features [18][19]. We want to measure the performance of

these two PHP frameworks by considering two performance parameters i.e. load and stress

testing. We will also investigate that how built-in support of data abstraction layer (ORM) in

CAKEPHP affect its performance. We did not find any scientific paper related to the

performance of CAKEPHP and CodeIgniter. But some web pages have also evaluated the

performance of both frameworks (CakePHP and CodeIgniter) and draw some conclusions

regarding the performance and choice of frameworks (CakePHP and CodeIgniter). But they

did not provide any information regarding their research methodology. The data is also not

available on these web pages regarding conclusions [18] [19] [20].

PHP frameworks are using in industry as well e.g. Viaplay AB (viaplay.se) was using Drupal

PHP content management systems (CMS) for their product. But soon they realized that

drupal is not suitable for their business as their business is growing and there are a lot of

users are coming on their product (viaplay.se) so they decided to change the technology.

They did some research on different PHP frameworks and they found Yii PHP framework

suitable for their business. The online system of Linasmatkasse (linasmatkasse.se) was

developed in simple customize PHP. After growing their business they realized that they

should developed their system in PHP framework for performance purposes and they

decided to choose symfony framework for their business after some research. So we decided

to study PHP frameworks and evaluated the performance of two PHP frameworks

(CAKEPHP and CodeIgniter) with the respect to load and stress testing because these

frameworks are widely used in the market. We will calculate performance of both

frameworks on local and live server by developing web pages of different complexities in

both frameworks to make results more realistic.

2.1 Purpose
The purpose of this thesis is to evaluate the performance of two PHP frameworks i.e.

CakePHP and CodeIgniter with respect to load testing, in order to know which framework

performs better than the other.

2.2 Problem Domain
This is an era of information technology and the usage of web is increasing in the form

different web applications which facilitate us in our daily lives. Due to increase in usage of

the web, the users are also very active contributors to the web ,so that is why the

performance of the website has become important. The poor performance of a website will

detract the users. To keep users interest on the website it is important to load the web page

quickly [34].

When a web developer decides to develop a website, in a PHP framework, where the

performance of the website is critical, a need arises for the developer to choose suitable PHP

framework, which is time consuming task. There are different PHP frameworks available for

the development. We want to calculate and compare, the performance of two PHP

frameworks i.e. CAKEPHP and CodeIgniter, which will help small and medium sized

companies, to choose the PHP framework for performance critical web applications. We will

calculate and compare the performance of these two PHP frameworks by considering the

performance parameters i.e. load and stress testing.

2.3 Aims and Objectives
Aim of this research is to evaluate the performance of PHP frameworks, with respect to load

testing and investigate, how the presence of object-relational mapping (ORM) affect the

performance of PHP frameworks. We chose CAKEPHP and CodeIgniter frameworks for

 10

experiment, because CAKEPHP has built-in implementation of ORM but CodeIgniter has no

built-in implementation of ORM.

The following are the objectives of the research that are fulfilled to achieve the aim:

 To investigate the effect of object-relational mapping (ORM) on PHP framework’s

performance.

 To evaluate the performance of the CodeIgniter (no ORM) framework with respect

to load testing.

 To evaluate the performance of the CAKEPHP (with ORM) framework with respect

to load testing.

 To analyze and compare the performance of both the frameworks (CakePHP and

CodeIgniter).

2.4 Research Questions

Following are our research questions:

RQ. Does a database abstraction layer (Object-relational mapping) affect the performance of

PHP frameworks with respect to load testing?

The following two research questions will be the sub questions of our first research question

which will more narrow down our research.

RQ1. In relation to object-relational mapping, which framework (CakePHP or CodeIgniter)

has better performance with the perspective of load testing on local server?

RQ2. In relation to object-relational mapping, which framework (CakePHP or CodeIgniter)

has better performance with the perspective of load testing on live server?

2.5 Research Methodology

In this section we will present research methodology, which we will use to answer our

research questions. To answer our main research question RQ, we will answer RQ1 and

RQ2. To answer RQ1 and RQ2, we will develop blog application with the same scope and

design in both the frameworks (CAKEPHP and CodeIgniter) and measure the performance

of both the applications with respect to load testing by running same test case with

automated testing tool. We will perform experiment in both local and live server. After

analyzing data from local and live server, we will draw conclusion, which framework has

better performance on local server and live server.

Our main objective is to investigate the effect of object-relational mapping on the

performance of the PHP frameworks. We chose CAKEPHP and CodeIgniter framework,

because CodeIgniter has no built-in implementation of ORM but CAKEPHP has built-in

implementation of ORM. So by comparing the performance of CAKEPHP and CodeIgniter

we will be able to analyze that how ORM affects the performance of the framework. The

experiment will be performed by the guidelines of Wohlin [17].

 11

3 THEORETICAL WORK

In this chapter we will explain in detail the relevant terms about performance testing.

We will describe types of performance testing and benefits associated with these types

of performance testing.

3.1 Performance

Achieving optimal performance of the application requires planning in application

design and understanding of best practices. There are different performance

requirements which need to determine, whether the application fulfill all those

requirements or not. While testing the performance of the application it is assumed that

application is functioning stable and robust.

It is important to eliminate the variables as much as possible from the tests. If there are

bugs in the code then those bugs can create a performance problem. To check either

application is functioning correctly or not, it is important to retest the application. The

application must pass its functional tests before testing its performance. If there is any

change in the application then unexpected changes can occur in hardware, network

traffic, software configuration, and system services.

To measure the performance, it is necessary to maintain the accurate and complete

records of test pass. The records should include following steps.

1. The exact system configuration, especially changes from previous test passes

2. Both the raw data and the calculated results from performance monitoring tools

These records not only show either application meets the performance goals but also

identify causes of future performance problems. In each test pass it is necessary to run

same set of performance tests, it is not possible to determine different results are due to

changes in tests rather than changes in the application.

There is different factors impact the results of performance tests, for example, time

duration of application (for how long the application runs before the test begins). In

addition to these, some more factors which affect the performance and those are

firmware design, applications that load at the system startup, memory, I/O

components, built in capabilities of system components. To help the system designers

and manufacturers, there are tools and information for design and tuning of systems

for best performance [25].

3.2 Performance Testing
“Performance testing is defined as the technical investigation done to determine or

validate the speed, scalability, and/or stability characteristics of the product under test.

Performance-related activities, such as testing and tuning, are concerned with

achieving response times, throughput, and resource-utilization levels that meet the

performance objectives for the application under test” [27].

3.3 Types of performance testing
There are three types of performance testing.

 Load testing

 Stress testing

 Capacity testing

 12

3.3.1 Load testing
Load testing is used to verify that application can meet desired performance objectives.

These performance objectives are often specified in a service level agreement. A load test is

used to measure response times, throughput rates, and resource-utilization levels. This is

used to identify application’s breaking point [27].

3.3.1.1 Load test benefits

 It determines the throughput requires to support the anticipated peak production

load.

 It determines the adequacy of hardware environment.

 Evaluates the adequacy of a load balancer.

 Detects concurrency issues.

 Detects functionality errors under load.

 Collects data for scalability and capacity planning purposes.

 Helps to determine number of users the application can handle before performance is

compromised.

 It also determines the load for the hardware can handle [27].

3.3.2 Stress testing
The objective of stress testing is to reveal application bugs that becomes visible only under

high load conditions. These bugs can include such things as synchronization issues, race

conditions, and memory leaks. Stress testing enables to identify application’s weak points,

and shows how the application behaves under extreme load conditions [27].

3.3.2.1 Stress test benefits

 It determines either the data can be corrupted by making more stress on the system.

 It provides an estimate to show how far target load an application can go before

causing failures and errors in addition to slowness.

 It allows establishing the application monitoring the triggers to warn of coming

failures.

 It also ensures that security vulnerabilities are not opened by stressful conditions.

 It also determines what sorts of failures are most valuable to plan for [27].

3.3.3 Capacity testing
Capacity testing is conducted in conjunction with capacity planning. Capacity testing is

related to future growth to accommodate future load of users. We estimate that how many

additional resources (such as processor capacity, memory usage, disk capacity, or network

bandwidth) will be necessary to support future usage levels [27].

3.3.3.1 Capacity testing benefits

 Provides information about how workload can be handled to meet business

requirements.

 Provides actual data that capacity planners can use to validate or enhance their

models and/or predictions.

 Enables you to conduct various tests to compare capacity-planning models and/or

predictions.

 Determines the current usage and capacity of the existing system to aid in capacity

planning.

 Provides the usage and capacity trends of the existing system to aid in capacity

planning [27].

 13

4 EMPIRICAL EVALUATION

In this chapter we present our experiment design with its execution with the guide lines of

Wohlin [17]. We will determine independent and dependent variables for our experiment and

then we will formulate hypothesis. These hypotheses will be accepted or rejected on the

basis of experiment findings. The performance of applications implemented in PHP

frameworks are measured with the help of automated test tools. The objective of this study is

to compare the performance of the two PHP frameworks i.e. CAKEPHP and CodeIgniter. In

the end of this chapter we will present the data from the experiment.

4.1 Experiment Definition

Analyze the CAKEPHP and Condeigniter frameworks to evaluate the performance of both

frameworks with respect to the effectiveness of the load testing on local and live server.

4.1.1 Experiment Explanation

To perform the experiment we developed applications in both PHP frameworks i.e.

CAKEPHP and CodeIgniter. As we were intended to compare the performance of both

frameworks with respect to load and stress testing so we followed the following precautions

to develop applications in both frameworks so that we can have good comparison of

performance of both frameworks.

 The scope of both applications was the same.

 The HTML and CSS design of both applications were the same.

 We strictly followed the documentation in the development of applications in both

frameworks i.e. CAKEPHP [8] and CodeIgniter [9] so that we can use the power and

best practices of both frameworks.

 We tested applications on the same local and live environments.

 We tested both applications with the same automated testing tool.

To compare two frameworks it is necessary that applications developed in both

frameworks should have the same scope, same design and all the best practices and

guidelines of the respective frameworks should be followed which are necessary to

increase the performance of the application. So that’s why we developed blog

application in both frameworks. Application has the following functionalities for user.

 User can login and logout

 Visitor user can view different posts and comments on the posts

 Visitor and logged in User can perform textual search

 Every logged in user has its own admin area

 Every logged in user can add posts and comment to the posts

 Every logged in user can delete its posts from the admin area.

We used MySQL database to store application data. We used HTML and CSS for

design purposes. We deployed both applications in local and live server. We used

laptop as our local environment and in local machine we installed wamp (Windows,

Apache, MySQL and PHP) package and deployed both applications in wamp. To

deploy both applications on live environment we bought web hosting with all the

necessary tools installed on live environment. We also bought domain name

(shayansolutions.com) to access our application on live server through internet. We

created two sub domains i.e. http://cake.shayansolutions.com/,

http://cake.shayansolutions.com/

 14

http://CodeIgniter.shayansolutions.com/ to deploy CAKEPHP and CodeIgniter

applications respectively. Both blog applications look same.

Figure 4.1: CodeIgniter Blog

http://codeigniter.shayansolutions.com/

 15

Figure 4.2: CakePHP Blog

After developing and deploying both the blog applications on local and live servers the next

step was to measure the performance of these both blog applications. As we were intended to

measure the performance of these both applications with respect to load and stress testing so

we decides to do the load testing using automatic test tool i.e. JMeter.

4.1.1.1 JMeter

JMeter is an open source software designed to measure the performance of the web

application and it is widely used in Software application developer community to measure

the performance. JMeter is used to test the performance of both static and dynamic

resources. It is used to simulate heavy load on a server, network or object to test its strength

and overall performance under different load types. It can also be used to make analysis of

performance graphically. It has the ability to test the performance of the web application

with respect to load testing. It can be used to load and performance test for different server

types i.e. Web-HTTP, HTTPS, Database via JDBC, LDAP etc. It provides the functionality

 16

to choose different load statistics with pluggable timers. Jmeter is not a web browser but for

web services and remote services it looks like web browser. JMeter does not perform all the

functions like normal browser, for example it does not execute javascript found in the HTML

page. It also does not render HTML page like normal browser but response can be seen as

HTML but timings are not included in the samples. To perform load testing in Jmeter, first

we need to design the test plan. Test plan describes which functionalities of the application,

for which we want to perform load test. JMeter has some feature elements which we use to

create a test plan in JMeter.

4.1.1.1.1 Building Test Plan

In JMeter test plan describes the series of steps that JMeter will execute when test plan is

run. A test plan consists of different elements and these elements are Thread Groups, logic

controllers, sample generating controllers, listeners, timers, assertions, and configuration

elements.

4.1.1.1.2 Thread Group

Thread group is the beginning point of every test plan. All the controllers are samplers

resides under thread group. Listeners reside directly under test plan. Thread group basically

controls the number of thread that JMeter will use to execute the test. Thread group provides

three options to set for running the test.

 Set the Number of threads

 Set the Ramp up time period

 Set the Number of times to execute the test for each thread

Every thread will execute test plan independent to the other threads. Multiple threads are

used in load test to simulate concurrent connections to the server application.

Ramp-up time tells the JMeter how long to delay between starting each thread.

OR

The ramp-up period tells JMeter how long to take to "ramp-up" to the full number of threads

chosen. Ramp-up time should be long enough that there should be small work load of the

threads at the start of the test on the server.

Example: If 10 threads are used, and the ramp-up period is 100 seconds, then JMeter will

take 100 seconds to get all 10 threads up and running. Each thread will start 10 (100/10)

seconds after the previous thread was begun.

4.1.1.1.3 HTTP Request Sampler

This HTTP request sampler tells JMeter to send HTTP request to server and wait for the

response. This sampler is used to send multiple HTTP request to the same server.

4.1.1.1.4 Recording Controller:

Recording controller is used to record the script of all the functionalities which we want to

test. We perform the functionalities in the test plan manually in the browser and Jmeter

record those functionalities. In other words the recording controller record all the test plan

and we run this recorded test plan for different number of thread and different ram-up times.

4.1.1.1.5 Listeners

Listeners are used to access the information which JMeter gathers about the test plan. This

information includes different statistics i.e. Number of threads, Response time, Throughput

http://jmeter.apache.org/usermanual/test_plan.html

 17

etc. These statistics about the test plan are gathered in the csv files or in the form of graph.

We used Summary report and aggregate graphs listeners to gather information.

The following figure 4.3 shows the test plan and its different elements discussed above.

Figure 4.3: Test Plan in JMETER

In the above figure the test plan is shown. In the left window pane the test plan, thread group,

HTTP request sampler, recording controller and listeners (Summary report and Aggregate

graphs) are showing. Under the recording controller all the recording of the script can be

seen. Recording is available in the form of application paths of the functionalities which we

performed during recording. In the right window pane three important fields number of

users, ramp-up time and loop count. We can specify number of threads (users) for which we

want to test application with the test plan recorded in the left window pane under recording

controller. The ramp-up time will specify the time for which all the threads should be up and

running.

We tested both applications in jMeter with load testing on both local and live server. We

created the test plan in jmeter by using all the important functionalities of the applications.

The test plan was same for both the applications. We tested both applications for load testing

 18

by increasing load (users). We started testing with 100 users and keeps increasing number of

users to check which application respond better by increasing load on the application. Both

the applications were tested with same test plan and same load on local server. In live server

we used the same test plan to test the applications but the load was different from the local

server because the live server cannot support huge load of users. The following is the test

plan which we used to test applications for load testing on local and live server.

 Test Plan

1 1 Root

2 1 Login

3 1 Dashboard

4 1 Add new category

5 1 Add new post

6 1 Search

7 3 Visited category

8 3 Visited post

9 1 Comment on the post

10 1 About

11 1 Logout

Table 4.1: Test Plan to test application

The above test plan showing that in which order the user performed different actions on the

application. The user performed the following actions.

 User entered in the application

 User performed login

 User visited the dashboard after login

 User added one new category into the database

 User added one new post and assigned category to the post

 User performed text search only once and visited three different categories

and posts which came in the result of text search.

 User commented on the post only once

 User visited the about page and at the end user logout

We divided our experiment testing in two parts. In first part we deployed both applications

on local server and tested both the applications on local server and in second part we

deployed both the applications on live server and tested both the applications on live server.

On local server, we tested application in different iterations. We started iteration from 100

threads (users) and tested both applications up to 1100 thread (users). During testing with

1100 and more threads (users) on local server for both applications the server were

producing connection errors. Because apache server allows limited number of socket

connections for clients. In local environment apache server can only process 150 clients

(threads) simultaneously. We increased the ramp-up time during different iterations to get

maximum results. But after 1100 users the server was throwing connection errors on local

server for both applications. Testing with 1000 users (threads) the server was running with

its maximum capacity and with 1100 users (threads) server was running in stress conditions.

On live server we started testing with 100 threads and were only able to test up to 600

threads because live server was sending connection refused error with more than 600 users.

But the error rate on live server was very low because the live server had capacity to process

more number of users simultaneously. In this way we performed testing on both local and

live server for both applications with different number of threads and with different ramp-up

times and we gathered results in the form of csv files and graphs. JMeter measures the

 19

response time, throughput and standard deviation to measure the performance of the

application.

Throughput
The Throughput shows the amount of throughput on the server during each second of the

scenario run. Throughput is measured in kilobytes and represents the amount of data that the

users received from the server at any given second.

Response Time
The Response Time is the time interval between the receipt of the end of transmission of an

inquiry message and the beginning of the transmission of a response message to the inquiry

source.

4.2 Experiment Planning

4.2.1 Hypothesis Formulation
A hypothesis is formulated before the design and execution of the experiment. Hypothesis

tells what we want to achieve from the experiment. This hypothesis is accepted or rejected

on the basis of data collected from experiment. As we will measure the performance of PHP

frameworks (CAKEPHP, CodeIgniter) on both local and live server so we will have null and

alternative hypothesis for local and live server separately.

Hypothesis for local server:

1. Null Hypothesis, H0: There is no difference of performance between CAKEPHP and

CodeIgniter with respect to load testing (response time, throughput) on local server.

2. Alternative Hypothesis, H1: There is a difference of performance between CAKEPHP

and CodeIgniter with respect to load testing (response time, throughput) on local server.

Hypothesis for live server:

1. Null Hypothesis, H0: There is no difference of performance between CAKEPHP and

CodeIgniter with respect to load testing (response time, throughput) on live server.

2. Alternative Hypothesis, H1: There is a difference of performance between CAKEPHP

and CodeIgniter with respect to load testing (response time, throughput) on live server.

4.2.2 Experiment Variables
Before the experiment design we need to find out independent and dependent variables.

4.2.2.1 Independent Variables

Independent variables are those variables which are controllable and changeable in the

experiment. Independent variables affect on dependent variables. In our experiment the

independent variables are Frameworks (CakePHP and CodeIgniter).

4.2.2.2 Dependent variables

The effect of the independent variables measured in dependent variable. Usually there is one

dependent variable and it is derived from the hypothesis. The dependent variable is not

directly measureable but this is measured indirectly. In our experiment the dependent

variable is performance (load test i.e. response time and throughput).

 20

4.2.2.3 Participants/Subjects

As we measured the performance of the PHP frameworks (CAKEPHP and CodeIgniter) with

automated test tools. We measured the performance of applications with Jmeter tool which

puts the load on the server with virtual users (threads).So these virtual users are

participants/subjects who performed the experiment.

4.3 Design Experiment
The objective of the experiment is to draw conclusion about the problem which is going to

solve. To draw the conclusion we need to collect data from experiment and apply some

statistical analysis on the data. Experiment design is very important to draw conclusion about

experiment. Experiment design tells which statistical technique we should apply on data to

draw conclusion [17].

4.3.1 General Design Principles
The general design principles are randomization, blocking and balancing. In our study we

used all the three principles i.e. randomization, blocking and balancing.

4.3.1.1 Randomization

Randomization is the most important design principles. The randomization is used for the

allocation of the objects, subjects and in which order the tests are performed. In our

experiment we tested performance of applications with different number of virtual users to

randomize the selection of the subjects.

4.3.1.2 Blocking

In the experiment some factors have effect on the response and we do not want to consider

that effect on the response so we eliminate that undesired effect of the factor on the response.

This design principle is called blocking. In our experiment we measured the performance of

PHP frameworks (CAKEPHP and CodeIgniter) so there is chance that performance of one

framework will be different on local server than on live server with the same number of

virtual users. So that’s why we measured the performance in two blocks. In one block we

measured the performance in local server and other block we measured performance on live

server.

4.3.1.3 Balancing

We used balanced deign principle for our experiment because for every treatment we used

the same number of subjects (Virtual users). We tested both frameworks with equal number

of users (load) in every iteration.

4.3.2 Experiment Design Type
To determine our experiment design type we need to find out factors and treatments in our

experiment. In our experiment we are measuring the performance of the PHP framework

(CAKEPHP and CodeIgniter) so frameworks is the factor in our experiment and CakePHP

and CodeIgniter are the treatments.

Factor: Framework

Treatment1: CAKEPHP

Treatment2: CodeIgniter

The following table show that how subjects (virtual users) are assigned to the treatments.

The following table shows that each treatment is assigned with the same number of virtual

users to test the performance.

 21

Subjects (virtual users) Treatment1 Treatment2

 100 CAKEPHP CodeIgniter

 200 CAKEPHP CodeIgniter

 300 CAKEPHP CodeIgniter

 400 CAKEPHP CodeIgniter

 500 CAKEPHP CodeIgniter

Table 4.2: Treatments to test performance

4.3.3 Experiment Instrumentation
As we performed experiment on local and live server so that’s why we had different

instrumentation and different server configurations on local and live server.

4.3.3.1 Instrumentation on local Machine

 Processor: Intel(R) Core(TM) 2 Duo CPU T5800 @2.00GHz

 Installed memory: 3.00 GB

 System Type: 32 Bit operating System

 Operating System: Windows 7

 Web Server: Wamp (Windows apache MySQL PHP)

 JMeter for load testing

4.3.3.2 Instrumentation on live Server

 Operating system: Linux

 Server Name: shayansolutions.com

 MySQL Disk Space: 0.24 MB

 LAMP(Linux Apache MySQL PHP)

 Apache version: 2.2.24

 MySQL version: 5.1.70-cll

 PHP version: 5.3.23

 Architecture: i686

4.3.4 Experiment validity evaluation
Validity evaluation concerns about the validity of the results. It consider how the results are

valid which are drawn from the experiment. It is important that the results should valid for

the population of interest. We are considering three levels of validity about our experiment

results.

4.3.4.1 Internal Validity

In the internal validity the relationship between treatment and outcome is observed. In other

words we must make sure that treatment causes outcome. In our experiment we repeated the

experiment several time so that treatment should causes the outcome. We performed

experiment on local and live server so during the experiment we make sure that everything is

properly installed and working properly on both local and live environment so that the

experiment should be performed properly and results should not be affected. JMeter

automatically replicate the test plan and there was some database communication involved in

test plan so we also make sure that jmeter is testing applications correctly and inserting the

entries in the database accordingly.

4.3.4.2 Conclusion validity

In this validity the relationship between treatment and outcome is concerned to make sure

that there is statistical relationship between treatment and outcome. As mentioned above in

the experiment design that we have one factor and two treatments in our experiment. So that

we choose right statistical test i.e. T-test. We performed the T-test on the dataset collected

 22

from the experiment to draw proper conclusion about the experiment. T-test shows how

treatments and outcome are statistically related with each other.

4.3.4.3 External Validity

This validity is concerned about the generalization of the results. The results gathered from

our study can generalize our study? We developed only one application in both the PHP

frameworks (CAKEPHP and CodeIgniter) and we strictly followed development

documentation and the best coding practices of both frameworks respective recommended

for respective frameworks so that we can develop applications in both frameworks by using

their maximum power. In this way we can be able to generalize our results. We developed

medium sized applications in both the frameworks (CAKEPHP and CodeIgniter) which

cover all the necessary functionalities which modern website should provide. But there is

possibility that these frameworks (CAKEPHP and CodeIgniter) may have different

performance with different complexity level. We only measured the performance of the

application with respect to load testing. But the performance of these frameworks can

measured with other factors for examples which of these two frameworks (CAKEPHP and

CodeIgniter) has low development time or which framework provides better reusability etc.

4.3.5 Data Sets
As we measured the performance of both the applications on both local and live server so we

gathered data for both applications from local and live server separately with different

iterations. We presented datasets for local and live server separately in the appendix. The

data sets presented in the appendix have 5 columns.

Sampler_label:

In the label section you will able to see the entire recorded http request, during test run or

after test run.

Sample:

Samples denote to the number of http requests executed for a given thread. For example if

we have one HTTP request in our test plan and we run it with 100 users, than the number of

samples will be 100x1=100. If we have five HTTP requests in our test plan and we run it

with 100 users, than the number of samples will be 100x5=500. It means that 500 HTTP

requests were executed in by running test plan with 100 users.

Average:
Average is the average response time taken to execute the complete test plan with one or

more than one users. This response time is recorded in millisecond.

Std.Deviation:

This shows how many exceptional cases were found which were deviating from the average

value of the receiving time. The lesser this value more consistent the time pattern is assumed.

Throughput:

Throughput is measured in kilobytes and represents the amount of data that the users

received from the server at any given second.

4.3.5.1 Data Sets on local server

The following table shows that how much ramp-up we used in each test run with different

number of users on local server.

http://jmeterresults.blogspot.se/2012/07/jmeterunderstanding-summary-report.html

 23

Iterations Number of threads (users) Ramp up time

 1 100 100

 2 200 200

 3 300 300

 4 400 400

 5 500 500

 6 600 600

 7 700 700

 8 800 800

 9 900 900

 10 1000 1000

 11 1100 1100

Table 4.3: Datasets on local server

4.3.5.2 Data Sets on live server

The following table shows that how much ramp-up we used in each test run with different

number of users on live server.

Iterations Number of users Ramp up time

 1 100 100

 2 200 200

 3 300 300

 4 400 400

 5 500 500

 6 600 600

Table 4.4: Datasets for live server

 24

5 RESULTS AND ANALYSIS
In this chapter we will present the data collected during the execution of the experiment in

more formatted form. We will present and analyze the results. We will interpret results using

descriptive statistics and hypothesis testing.

5.1 Descriptive statistics
We will use descriptive analysis to present and visualize the data in tabular and graphics

form. We will present data separately for local and live server using descriptive analysis.

5.1.1 Data analysis on local server
We will present data collected from local server during experiment of both applications

developed in both frameworks (CAKEPHP and CodeIgniter). This test plan has run with

different number of threads (users) ranging from 100 to 1100 for both applications. We ran

test plan starting with 100 users and added 100 users in every successive test plan. Both the

applications have been tested up to 1000 threads (users) but after exceeding from 1000

threads (users) the server were sending connection timeout errors. Because on local server

apache allow the limited number of clients (threads) to be connected at a time.

The columns in below tables are representing the statistics related to performance of the

applications. The columns have the same meaning in the tables below which we described in

previous chapter’s section 4.3.5 data sets. But the data presented in the below tables is the

total data for the whole test plan. In the previous chapter we presented data of every HTTP

request included in the whole test plan but in this below table we are showing the sample,

average response time, standard deviation and throughput of the whole test plan. In other

words the below tables are showing the total sample. total average, total standard deviation

and total throughput presented in the previous chapter data sets.

5.1.1.1 CAKEPHP data analysis on local server

The following table shows the data set of the CAKEPHP framework on local server. The

table shows the average response time, standard deviation, through put and error percentage

of the test plan run with different number of users.

sampler_label sample Average (sec) Stddev (sec) error% Throughput (kb/sec)

100 users 1700 11.5 12.2 0 39.9

200 users 3400 36.4 86.2 0 39.0

300 users 5100 55.3 171.0 4 38.3

400 users 6800 44.1 160.1 31 35.5

500 users 8500 45.6 180.4 38 35.3

600 users 10200 41.0 174.3 46 36.7

700 users 11900 36.8 172.1 54 31.5

800 users 13600 36.8 182.0 60 41.2

900 users 15300 27.4 143.5 64 39.7

1000 users 17000 29.4 155.4 64 37.5

1100 users 17085 26.0 143.6 68 36.6

Table 5.1: Results of CakePHP on local server

 25

5.1.1.2 CodeIgniter data analysis on local server

The following table shows the data set of the CodeIgniter framework on local server. The

table shows the average response time, standard deviation, through put and error percentage

of the test plan run with different number of users.

sampler_label Sample Average (sec) Stddev (sec) error% Throughput (kb/sec)

100 users 1700 0.5 0.7 0 161.8

200 users 3400 10.4 21.3 0 127.6

300 users 5100 30.1 88.1 0 118.8

400 users 6800 33.4 113.8 12 128.9

500 users 8500 26.9 102.8 30 126.5

600 users 10200 25.4 108.2 41 120.9

700 users 11900 29.9 133.2 43 121.1

800 users 13600 26.2 121.5 49 126.5

900 users 15300 22.9 112.4 55 128.0

1000 users 17000 21.4 112.9 62 118.6

1100 users 17034 23.7 120.2 56 134.6

 Table 5.2: Results of CodeIgniter on local server

 26

5.1.1.3 Cross comparison of response time between CAKEPHP and CodeIgniter

Figure 5.1: Average response time between CakePHP and CodeIgniter on local

server

The above graph is showing the comparison of average response time between CAKEPHP

and CodeIgniter applications. The response time has been recorded by running test plan with

different number of users for both applications. The graph is showing that the response time

of both the applications is increasing with the increasing number of users in every test run

but after 300 users the response time of both the applications is decreasing but actually the

response time should be increased. This decreasing trend in response time on increasing load

on applications is due to error percentage in HTTP requests. When test plan is run with more

concurrent users, the HTTP requests also increases on the local server and when these HTTP

requests cross the limit of the local server’s capacity then all those HTTP requests become

failed because local server allows limited number of clients to be connected with server. It

can be seen in the graph that the response time of CodeIgniter application is better than

CAKEPHP application in all the iterations. CodeIgniter performed good in all the load

conditions (threads) on local server. CodeIgniter performance was better than CAKEPHP

with the perspective of response time. Here in the graph we are showing the results until

thousand users, but application breaks at the 1100 users and stress comes on the application

on 1100 users. There is a little difference between the 1000 users and 1100 users for the

response time.

 27

5.1.1.4 Cross comparison of throughput between CAKEPHP and CodeIgniter

Figure 5.2: Throughput between CakePHP and CodeIgniter on local server

The above graph is showing the comparison of throughputs between CAKEPHP and

CodeIgniter. The throughput has been recorded as kilobytes per seconds. As it can be seen in

the above graph that throughput of applications is not consistent. This is due to increase in

error percentage in every test plan run with increasing number of users. It can be seen that

throughput of CodeIgniter application is significantly better than CAKEPHP in all the load

conditions.

5.1 Hypothesis Testing

Hypothesis testing is performed on data collected from experiment. As we have hypothesis

for different local and live servers so here we are analyzing data of local server so here we

test local server hypothesis. Our hypothesis is:

Hypothesis, H0: There is no difference of performance between CAKEPHP and

CodeIgniter with respect to load testing (response time, throughput) on local server.

We are intended to measure the performance of the CAKEPHP and CodeIgniter with respect

to load testing on live server. After testing the applications on live server the Jmeter provided

us the two performance statistics i.e. response time and throughput, so we have two

depended variables (response time and throughput) here and we will apply T-tests on

response time and throughput data of both applications separately. We calculated response

time and throughput of both the applications by applying load on both the application with

different number of threads ranging from 100 to 1100 threads. The testing with the load from

100 users to 1000 users showing load testing and testing with the load of 1100 users is

showing stress testing. We applied T-test on the response time and throughout of both the

applications with load range from 100 to 1000 users, which is the load testing.

 28

5.1.1 T-test on response time of CAKEPHP and CodeIgniter

To test NULL hypothesis we applied T-test on the response time of CAKEPHP and

CodeIgniter. The T-test is performed by considering un-equal variances of response time of

both the frameworks i.e. CAKEPHP and CodeIgniter. By calculating the mean value of the

response time of both frameworks, the mean value of response time (22.71 sec) of

CodeIgniter is less than the mean value of response time (36.43 sec) of CAKEPHP. This

shows that response time of CodeIgniter is better than CAKEPHP. In other words that

CodeIgniter has better performance with perspective of response time. To know more about

our experiment data we will analyze the values of t-test.

According to our t-test values, t value 2.78 is greater than t critical values with level of

significance 0.01. So we can reject null hypothesis. There is significant difference between

the response time values of both the applications. So our null hypothesis is rejected i.e.

“There is no difference of performance between CAKEPHP and CodeIgniter with respect to

load testing (response time) on local server” and we accept our alternative hypothesis i.e.

“There is a difference of performance between CAKEPHP and CodeIgniter with respect to

load testing (response time) on live server”. So after rejecting null hypothesis we can

conclude that there is difference between the performance (response time) of CodeIgniter

and CAKEPHP framework. As mean of response time (22.71 sec) of CodeIgniter is less than

the mean of response time (36.43 sec) of CAKEPHP. So performance (response time) of the

CodeIgniter framework is better than the corresponding response time of CAKEPHP with

the response time.

5.1.2 T-test on throughput of CAKEPHP and CodeIgniter

T-test applied on throughput values of CakePHP and CodeIgniter frameworks for 100 to

1000 users show that absolute t-value 22.21 is greater than t Critical values with Level of

significance 0.001. There is significance difference between the throughput of CAKEPHP

and CodeIgniter. We reject our null hypothesis. From T-test we found that mean value of

throughput (127.87 kb/sec) of CodeIgniter is greater than mean value of throughput (37.46

kb/sec) of CAKEPHP. So CodeIgniter has better performance with the perspective of

throughput.

5.1.3 Data analysis on live server
We will present data collected from live server during experiment of both applications

developed in both frameworks (CAKEPHP and CodeIgniter). This test plan has run with

different number of threads (users) ranging from 100 to 600 for both applications. We run

test plan starting with 100 users and added 100 users in every successive iteration. Both the

applications responded till 500 threads (users) but after exceeding from 500 threads (users)

the server were sending connection timeout errors. Because on live server apache allow the

limited number of clients (threads) to be connected at a time.

5.1.3.1 CAKEPHP data analysis on live server

The following table shows the data set of the CAKEPHP framework on live server. The table

shows the average response time, standard deviation, through put and error percentage of the

test plan run with different number of users.

 29

Table 5.3: Results of CakePHP on live server

5.1.3.2 CodeIgniter data analysis on live server

The following table shows the data set of the CodeIgniter framework on live server. The

table shows the average response time, standard deviation, through put and error percentage

of the test plan run with different number of users.

sampler_label sample average (sec) stddev (sec) Throughput (kb/sec) error%

 100 users 1900 0.8 0.7 208.4 0

 200 users 3800 1.6 1.9 714.7 0

 300 users 5700 1.3 1.5 615.2 0

 400 users 7600 2.9 5.8 695.4 0.5

 500 users 9500 4.8 8 833.7 0.3

 600 users 11229 22.4 127.6 195.6 2.4

Table 5.4: Results of CodeIgniter on live server

5.1.3.3 Cross comparison of response time between CAKEPHP and CodeIgniter

Figure 5.3: Average response Time between CakePHP and CodeIgniter on live server

The above graph is showing the comparison of average response time between CAKEPHP

and CodeIgniter applications on live server. The response time has been recorded by running

test plan with different number of users for both applications. The graph is showing that the

sampler_label Sample Average (sec) Stddev (sec)
Throughput
(kb/sec) error%

 100 users 2000 0.9 5.5 128.1 0

 200 users 4000 1.3 1.2 190.2 0.075

 300 users 6000 1.5 1.3 279.7 0.05

 400 users 8000 2.0 2.5 329.6 0.06

 500 users 10000 3.3 4.1 285.2 20.1

 600 users 11953 5.9 9.6 297.2 6.1

 30

response time of both the applications is increasing with the increasing number of users in

every test run respectively. It can be seen in the graph that the response time of CodeIgniter

application is better during the initial test runs with little loads but when load is increased on

both the applications then response time of CAKEPHP applications is better. On the extreme

stress situation the CAKEPHP performed significantly better than the CodeIgniter.

5.1.3.4 Cross comparison of throughput between CAKEPHP and CodeIgniter

Figure 5.4: Throughput between CakePHP and CodeIgniter on live server

The above graph is showing the comparison of throughputs between CAKEPHP and

CodeIgniter on live server. The throughput has been recorded as kilobytes per seconds. As it

can be seen in the above graph that throughput of CodeIgniter application is significantly

more than CAKEPHP on all the load conditions but on the extreme stress condition the

throughput of CAKEPHP is better than the CodeIgniter framework.

5.2 Hypothesis Testing
The hypothesis testing is performed on data collected from experiment. As we have

hypothesis for different local and live servers so here we are analyzing data of live server so

here we test live server hypothesis. Our hypothesis is:

Hypothesis, H0: There is no difference of performance between CAKEPHP and

CodeIgniter with respect to load testing (response time, throughput) on live server.

We are intended to measure the performance of the CAKEPHP and CodeIgniter with respect

to load testing on live server. After testing the applications on live server the JMeter

provided us the two performance statistics i.e. response time and throughput, so we have two

depended variables (response time and throughput) here and we will apply T-tests on

response time and throughput data of both applications separately. We calculated response

time and throughput of both the applications by applying load on both the application with

different number of threads ranging from 100 to 600 threads. The testing with the load from

100 users to 500 users showing load testing and testing with the load of 600 users is showing

stress testing. We applied T-test on the response time and throughout values of both the

applications with load range from 100 to 500 users, which is the load testing.

 31

5.2.1 T-test on response time of CAKEPHP and CodeIgniter
The T-test applied on the response time of CAKEPHP and CodeIgniter on live server shows

that absolute t value i.e. 0.57 is less than t critical value with level significance 0.05. There is

no significance difference between response time values of both the frameworks. So we can

not reject our Null hypothesis. i.e. “There is no difference of performance between

CAKEPHP and CodeIgniter with respect to load testing (response time) on live server.

5.2.2 T-test on throughput of CAKEPHP and CodeIgniter

After applying T-test on throughput values of both the frameworks we found that absolute t-

value i.e. 3.27 is greater than t-critical values with the level of significance 0.01. There is

significant difference between the throughput values of both the frameworks. So we can

reject our Null hypothesis. i.e. “There is no difference of performance between CAKEPHP

and CodeIgniter with respect to load testing (throughput) on live server”. We accept our

alternative hypothesis i.e. “There is a difference of performance between CAKEPHP and

CodeIgniter with respect to throughput on live server”. T-test table shows that mean value of

throughput 242.56 kb/sec of CAKEPHP is less than mean value of throughput 613.48kb/sec

of CodeIgniter. So CodeIgniter has better performance with the perspective to throughput.

5.3 Results summary
The following tables are showing the results summary of both the frameworks for local and

live servers. The result summary is presented below for normal load conditions. The normal

load conditions for local server is the load testing with the range from 100 to 1000 users and

normal load conditions for live server is the load testing with range of 100 to 500 users. The

table shows that which framework performed better on local and live server. The plus (+)

sign is used to show better performance and minus (-) sign is used to show bad relatively bad

performance. The zero (0) sign shows that there was not significant difference between the

performance of both the application.

Results comparison of load testing

Environment CakePHP CodeIgniter

Local Server Response Time - +

Throughput - +

 Live Server Response Time 0 0

Throughput - +
Table 5.5: Results comparison for Normal conditions

The result summary is presented below for stress conditions. The stress condition for local

server is the load testing with 1100 users and the stress conditions for live server is the load

testing with 600 users.

Results comparison of stress testing

Environment CakePHP CodeIgniter

Local Server Response Time - +

Throughput - +

 Live Server Response Time + -

Throughput + -
Table 5.6: Results comparison for stress conditions

 32

6 DISCUSSION

The aim of the study was to measure the performance of the CAKEPHP and CodeIgniter

frameworks on local and live server, with respect to load and stress testing and how object-

relational mapping affect the performance of these frameworks. Whenever, small or medium

sized companies decide to start develop website by using PHP framework, the first thing

they have to consider that which framework should be used for development. Our study can

provide some facts related to performance of two, widely used PHP frameworks i.e.

CAKEPHP and CodeIgniter. We chose the topic because usually companies have to spend

time and money to find out that which PHP framework they should choose for their business.

We gathered results from local and live server by testing both the frameworks. The statistical

analysis of results from live server showed that overall there is no significant difference of

average response time between the CAKEPHP and CodeIgniter. But if we compare the

response time of both the frameworks in each iteration, we can see that with the load of 100 -

300 users, the response time of CodeIgniter is slightly better than CAKEPHP. But with load

of 200, 400 and 500 users the response time of CAKEPHP is better than CodeIgniter.

 On the stress conditions with the load of 600 users, the response time of CAKEPHP (5.9

sec) is significantly better than CodeIgniter (22.4 sec). On the stress conditions CAKEPHP

executed 11953 HTTP requests and CodeIgniter executed 11229 HTTP requests. CAKEPHP

executed more HTTP requests than CodeIgniter on stress conditions and its response time

was also better than CodeIgniter. After careful analysis of the response time of individual

HTTP requests involved in the test plan, it was accrued that in the first request, in which the

initialization of the framework takes place; CodeIgniter has longer response time than

CAKEPHP, in the case of live server. The initialization of the CodeIgniter application took

more time than CAKEPHP application initialization, in all the iterations, which affected the

overall response time of CodeIgniter application, in complete test plan.

After statistically analyzing the throughput of both frameworks on live server, it became

evident that the throughput of the CodeIgniter framework was significantly better, in all the

normal load conditions from 100 - 500 users. The throughput of CAKEPHP increased

gradually, as the number of users were increased from 100 to 400 (128.1- 329.6 kb/sec). It

faced a decline as the number of users rose to 500 (285.2 kb/sec). This decrease in

throughput, upon increasing load is due to the 20 % of error rate in HTTP requests processed

by CAKEPHP. There was a slight improvement as the number of users grew to 600 (297.2

kb/sec). But on stress conditions with 600 users, CAKEPHP performed better than

CodeIgniter with the perspective of throughput, because CAKEPHP executed more number

of HTTP requests than CodeIgniter.

From the results acquired by testing applications on the local server showed that CodeIgniter

performed much better than CAKEPHP framework with respect to response time and

throughput.

The results further showed that the response time of both the CAKEPHP and CodeIgniter

increased to a certain number of users (500 in the case of CAKEPHP and 400 in the case of

CodeIgniter) but faced a decline as the number of users increased. The increase or decrease

in response time was not constant though.

Conceptually the response time should increase with an increase in load, on both the

applications. This decrease in response time is due to increase in error rate in HTTP requests,

processed by both the applications. Some HTTP requests were declined by the local server

due to limited number of socket connections. Local server can only process limited number

 33

of HTTP requests simultaneously. But after statistically analyzing the, successfully

processed HTTP requests in a test plan, we came to conclusion that CodeIgniter performed

better than CAKEPHP with respect to response time and throughput, in both normal and

stress conditions on local server,

Table 5.1 and 5.2 showed the response time and throughput of CAKEPHP and CodeIgniter

framework on local server respectively. After comparing the response time and throughput

of both the frameworks, it can be seen that due to the absence of object-relational mapping

(ORM) implementation in CodeIgniter, it had overall better performance with respect to

response time and throughput in both the normal load and stress conditions. Although built-

in support of ORM in CAKEPHP provided facility, to define relationship between database

tables in the model and automatically generated the complex code for data access, according

to these relations defined in application model. But it created an extra overhead in the

performance of the application. Because the instantiation of the ORM object consumed more

memory and CPU utilization rather than the execution of the simple SQL queries in

CodeIgniter. ORM has to take care for different data usage scenarios so it generated complex

code automatically for data access, which took more time to execute. Due to this overhead in

performance, CAKEPHP did not perform better than CodeIgniter framework.

Table 5.3 and 5.4 showed the response time and throughput of CAKEPHP and CodeIgniter

framework on live server respectively. After comparing the response time and throughput of

both the frameworks, it can be seen that CodeIgniter performed better with respect to

response time and throughput in normal load (100 – 500 users) conditions. Due to built-in

support of ORM in CAKEPHP created overhead in its performance and that’s why

CAKEPHP could not perform better than CodeIgniter in normal load conditions. But in

stress (600 users) conditions CAKEPHP significantly performed better with respect to

response time and throughput. In stress conditions, built-in support of ORM in CAKEPHP

framework improved its performance. Because ORM is complete data abstraction layer and

it handles wide range of different data usage scenarios so it has the ability to handle the

concurrent database connections in stress conditions. Due to built-in support of ORM,

CAKEPHP effectively handled the stress conditions and processed not only more HTTP

requests (11953) than CodeIgniter (11229) but also efficiently processed these requests.

Even though in normal load conditions, ORM created overhead in the performance of

CAKEPHP but in stress conditions it applied positive effect in its performance. CodeIgniter

was running simple SQL queries to communicate with database, which was effective in

normal load conditions because it took less time to execute simple SQL queries. But in stress

conditions, simples SQL queries in CodeIgniter did no manage stress condition effectively.

CodeIgniter framework does not follow strictly MVC design pattern and object oriented

paradigm. CAKEPHP strictly follows the MVC design pattern and object oriented paradigm

that’s why CAKEPHP has to load a lot of libraries, helpers and components which also

create the overhead in its performance.

 34

7 CONCLUSION AND FUTURE WORK

After analyzing the results collected from local and live server. Overall CodeIgniter

framework performed better on local with perspective of response time and throughput. But

on live server we got mix results related to response time. In the start of load testing the

CodeIgniter performed better than CAKEPHP but as the load increased on the application

then CAKEPHP performed better than CodeIgniter with the perspective of response time.

But if we compare both frameworks with the perspective of throughput the CodeIgniter

performed better than CAKEPHP.

After analyzing the results it is clear that CodeIgniter performed better in normal load

conditions on live server but in stress conditions CAKEPHP performed better. Moreover

CodeIgniter is very light, it does not have huge libraries of functions, Authentication system

and access control list like in CAKEPHP. So we can conclude that CodeIgniter framework is

better for small or medium sized applications. CodeIgniter can handle less concurrent users.

Due to the huge libraries of functions, helpers, object-relational mapping and components in

CAKEPHP, it is good for big applications where there are a lot of concurrent users expected.

It has the ability to perform better in the stress conditions.

The built-in support of object-relational mapping (ORM) in CAKEPHP reduced the

development time. It provided the feature to define the relations of database tables in the

model to fetch data from different tables. But it created overhead in the performance of the

application developed in the CAKEPHP framework in normal and stress conditions on local

server. On live server, in normal conditions ORM support in CAKEPHP created overhead in

performance but in stress conditions, ORM support created a positive effect on the

performance of the CAKEPHP that’s why CAKEPHP performed better in stress conditions.

We conclude that the existence of the ORM in the framework is not useful for the

performance of the framework in normal load conditions but it is useful for the performance

of the framework in the stress conditions.

The importance of ORM cannot be denied because it increases the productivity,

maintainability and reusability of the code. So ORM supported frameworks should be used

for large scale applications, where huge database communication involved.

In the future the performance of these frameworks (CAKEPHP and CodeIgniter) can be

measured with other type of performance parameters i.e. Capacity testing. As more new PHP

frameworks have been introduced in the web development industry so this study can be

increased by including more PHP frameworks i.e. Yii, Symfony, Zend etc. The performance

of CAKEPHP and CodeIgniter frameworks can be measured for load testing by testing

different complexity applications to get better results. These applications should be

developed by different developers who have different experience of web development in

PHP frameworks (CAKEPHP and CodeIgniter). In future the performance of the PHP

frameworks can be measure by using third party Object-relational mapping implementation

instead of using built-in ORM support of the framework.

 35

8 REFERENCES

[1] W.Cui, L.Huang, L.J.Liang, J.Li, “The Research of PHP Development Framework Based

on MVC Pattern”, Conference on Computer Sciences and Convergence Information

Technology, IEEE Computer Society, 2009.

[2] C.Supaartagorn, “PHP Framework for database management based on MVC pattern”,

Department of Mathematics Statistics and Computer, Ubon Ratchathani University,

Thailand, 2011.

[3] P.R.Morpeth, J.Ellman, “Some Security Issues for web based frameworks”, School of

Computing, Engineering and Information Sciences, Northumbria University, UK, IEEE,

2010.

[4] S.Drobi, “A New Era of Web Application Development”, IEEE, 2012.

[5] Y.Zhang, “An Excellent Web Content Management System”, Department of Education

Science and Media Engineering Weifang University Weifang, China, IEEE, 2011.

[6] S.K.Patel, V.R. Rathod, S.Parikh, “Joomla Drupal and WordPress - A Statistical

Comparison of Open Source CMS”, IEEE, 2011.

[7] K. Hokamura, R. Naruse, M. Shiozuka, N. U. S.Nakajima, A.Iwai, “AOWP: Web-

specific AOP framework for PHP”, IEEE/ACM International Conference on Automated

Software Engineering, 2009.

[8] “Cake PHP makes building web applications simpler, faster and require less code”,

available at, http://cakephp.org

[9] “Code Igniter is an open source web application framework that helps you write

incredible PHP programs”, available at, http://CodeIgniter.com

[10] E.Wells, L.G.Tassinary, “Standardized Performance Trajectory as a Measure of

Usability”, USA, 1998.

[11] G. Mak, “Spring MVC Framework,” in Spring Recipes: A Problem-Solution Approach,

Apress, 2010, pp. 321–393.

[12] G.B. Laleci, G. Aluc, A. Dogac, A.Sinaci, O. Kilic, F. Tuncer, “A semantic backend for

content management systems”, Knowledge-Based Systems 23, 2010.

[13] S. NAKAJIMA, K. HOKAMURA, N. UBAYASHI, “Aspect-Oriented Development of

PHP-based Web Applications”, IEEE Computer Software and Applications Conference

Workshops, 2010.

[14] M. d. P. S. Zarate, G. A. Hernandez, A. R. Gonzalez, “Developing Lift-based Web

Applications Using Best Practices”, Procedia Technology 3, 2012, pp. 214 – 223

[15] R. L. T. Santos, P. A. Roberto, M. A. Goncalves, A. H. F. Laender, “A Web services-

based framework for building componentized digital libraries”, The Journal of Systems and

Software 81, 2008, pp.809–822.

http://cakephp.org/
http://codeigniter.com/

 36

[16] S.Kaur, K. Kaur, D. Singh, “ A framework for hosting web services in cloud computing

environment with high availability”, IEEE, 2012.

[17] C.Wohlin, P.Runeson, M.Host, M.C.Ohlsson, B.Regnell, A.Wesslen, “Experimentation

in software engineering an introduction”, USA, 2000.

[18] “PHP Review: 4 Most Common PHP Frameworks Reviewed – SevenL Networks”,

available at, http://blog.7l.com/php-review-4-most-common-php-frameworks-reviewed-

sevenl-networks/

[19] “PHP frameworks, Part 1: Getting started with three popular frameworks Zend,

symfony, CakePHP”, available at, http://www.ibm.com/developerworks/library/os-php-

fwk1/

[20] “CodeIgniter Vs CakePHP”,[Online]. Available:

http://www.dazines.co.uk/programming/CodeIgniter_vs_cakephp

[21] “CodeIgniter”.[Online]. Available: http://ellislab.com/CodeIgniter/user-guide/

[22]The PHP Group. PHP faq what is PHP and what does it stand for

http://php.net/manual/en/faq.general.php, June 2012.

[23] “CakePHP,” Wikipedia, free encyclopedia, Last modified on 5 September

2013.[Online]. Available: http://en.wikipedia.org/wiki/CakePHP [Accessed: July 2013]

[24] “Stress Testing”, Microsoft Developer Networks.[Online]. Available:

http://msdn.microsoft.com/en-

us/library/aa292187(v=VS.71).aspx#vxcontestingforperformanceanchorstresstesting

[Accessed: June 2013]

[25] “Testing for Performance”, Microsoft Developer Networks .[Online]. Available:

http://msdn.microsoft.com/en-

us/library/aa292187(v=VS.71).aspx#vxcontestingforperformanceanchormeasuringperforman

ce [Accessed: June 2013]

[26] ”Object Relational Mapping”, Wikipedia, free encyclopedia, Last modified on 30

September 2013.[Online]. Available: http://en.wikipedia.org/wiki/Object-relational_mapping

[Accessed: September 2013]

[27] ”Load Testing Web Applications”, J.D. Meier, Carlos Farre,Prashant Bansode, Scott

Barber, and Dennis Rea, Microsoft Corporation, September 2007.[Online]. Available:

http://msdn.microsoft.com/en-us/library/bb924372.aspx [Accessed: June 2013]

[28] “Cake Software Foundation. Intro to CakePHP, what is CakePHP”, June 2012.[Online].

Available: http://book. cakephp.org/1.1/view/307/Introduction-to-CakePHP

[29] https://en.wikipedia.org/wiki/Client-side

[30] N. Håkan, “PHP Framework Performance for Web Development Between CodeIgniter

and CakePHP”, August 2012.

[31] D.Golding, “Beginning CakePHP From Novice to Professional”, 2008.

[32] D.Upton, “CodeIgniter for rapid PHP application development”, 2007.

[33] P.K.Singh, P.Gupta, S.S.Bedi, K.Singh, “Analyze the performance of New Edge Web

Application’s over N-Tiers Layer Architecture”, pp. 299-305, 2011.

http://blog.7l.com/php-review-4-most-common-php-frameworks-reviewed-sevenl-networks/
http://blog.7l.com/php-review-4-most-common-php-frameworks-reviewed-sevenl-networks/
http://www.ibm.com/developerworks/library/os-php-fwk1/
http://www.ibm.com/developerworks/library/os-php-fwk1/
http://www.dazines.co.uk/programming/codeIgniter_vs_cakephp
http://ellislab.com/codeIgniter/user-guide/
http://en.wikipedia.org/wiki/CakePHP
http://msdn.microsoft.com/en-%20us/library/aa292187(v=VS.71).aspx#vxcontestingforperformanceanchorstresstesting
http://msdn.microsoft.com/en-%20us/library/aa292187(v=VS.71).aspx#vxcontestingforperformanceanchorstresstesting
http://msdn.microsoft.com/en-us/library/aa292187(v=VS.71).aspx#vxcontestingforperformanceanchormeasuringperformance
http://msdn.microsoft.com/en-us/library/aa292187(v=VS.71).aspx#vxcontestingforperformanceanchormeasuringperformance
http://msdn.microsoft.com/en-us/library/aa292187(v=VS.71).aspx#vxcontestingforperformanceanchormeasuringperformance
http://en.wikipedia.org/wiki/Object-relational_mapping
http://msdn.microsoft.com/en-us/library/bb924372.aspx
http://book/
https://en.wikipedia.org/wiki/Client-side

 37

[34] R.P.Ortiz, J. A. Gil, J. Sahuquillo, A. Pont, “The impact of user’s dynamic behavior on

web performance”, IEEE, 2012.

[35] R.P.Ortiz, J. A. Gil, J. Sahuquillo, A. Pont, “Analyzing web server performance under

dynamic user workloads”,pp. 386-395, IEEE, 2013.

[36] “Client Side Scripting”, Wikipedia, free encyclopedia , Last modified on 20 September

2013.[Online]. Available: http://en.wikipedia.org/wiki/Client-side_scripting [Accessed: July

2013]

[37] “Server Side Scripting”, W3Schools .[Online]. Available:

http://www.w3schools.com/web/web_scripting.asp [Accessed: June 2013]

[38] “Model View Controller”, CakeBook .[Online]. Available:

http://book.cakephp.org/1.3/en/The-Manual/Beginning-With-CakePHP/Understanding-

Model-View-Controller.html [Accessed: July 2013]

[39] “Java Programming / Design Patterns”, Wiki Books . Last modified on 3 September

2013[Online]. Available: http://en.wikibooks.org/wiki/Java_Programming/Design_Patterns

[Accessed: August 2013]

http://en.wikipedia.org/wiki/Client-side_scripting
http://www.w3schools.com/web/web_scripting.asp
http://book.cakephp.org/1.3/en/The-Manual/Beginning-With-CakePHP/Understanding-Model-View-Controller.html
http://book.cakephp.org/1.3/en/The-Manual/Beginning-With-CakePHP/Understanding-Model-View-Controller.html
http://en.wikibooks.org/wiki/Java_Programming/Design_Patterns

 38

9 APPENDIX

9.1 Source code of applications
We have uploaded our source code on github. We created public repository on github. The

code both CAKEPHP and CodeIgniter can be accessed through the following links of github

repositories.

9.1.1 Source code of CAKEPHP
The source code of CAKEPHP application can be accessed by the following link of the

github repository for CAKEPHP.

https://github.com/aliraza368/CAKEPHPblog

We have deployed CAKEPHP application on the live server. So our CAKEPHP application

can be accessed by clicking the following link.

http://cake.shayansolutions.com/

9.1.2 Source code of CodeIgniter
The source code of CodeIgniter application can be accessed by the following link of the

github repository for CodeIgniter.

https://github.com/aliraza368/CodeIgniter

We have deployed CodeIgniter application on the live server. So our CodeIgniter application

can be accessed by clicking the following link.

http://CodeIgniter.shayansolutions.com/

9.2 Test Results

We are presenting the results of load testing which JMeter provided us in the form of csv

file. We will present results of CAKEPHP and CodeIgniter frameworks gathered from local

and live server separately. We uploaded all the results on githum repository. These results

can be accessed by clicking on the following link. This is public repository.

https://github.com/aliraza368/loadtestresults

9.2.1.1 Data Sets on local server

The following tables show the datasets on local testing.

9.2.1.1.1 CAKEPHP Data Sets on local server

The following tables showing the datasets of CAKEPHP load testing.

https://github.com/aliraza368/CAKEPHPblog
https://github.com/aliraza368/Codeigniter
http://codeigniter.shayansolutions.com/
https://github.com/aliraza368/loadtestresults

 39

100 Users 200 Users

sampler_label count average Stddev Throughput count average Stddev Throughput

/cake/ 100 20086 36093 8.27 200 266261 260539 11.095

/cake/posts/about 100 6608 5295 2.15 200 14316 8554 1.89

/cake/users/login 200 8696 8567 1.94 400 21220 13561 1.14

/cake/users/dashboard 100 7434 5114 0.78 200 15036 7321 0.47

/cake/categories/add_category 300 10256 7794 2.89 600 21406 12205 1.75

/cake/posts/add_new_post 300 12314 9118 12.25 600 23811 12449 11.87

/cake/posts/view_post/1 300 13266 9152 12.55 600 24694 12116 12.13

/cake/posts/search 100 10324 5401 2.05 200 20501 6365 1.70

/cake/categories/view_category/1 100 9601 5684 1.77 200 17415 6832 1.47

/cake/users/logout 100 16872 11153 0.91 200 33137 12818 0.52

TOTAL 1700 11519 12253 39.99 3400 36402 86229 39.03

300 Users 400 Users

sampler_label count average Stddev Throughput count average Stddev Throughput

/cake/ 300 548123 486647 9.56 400 440056 515101 8.17

/cake/posts/about 300 17593 8192 1.70 400 13995 10657 1.53

/cake/users/login 600 25309 13797 0.86 800 19506 16218 1.02

/cake/users/dashboard 300 17075 7143 0.37 400 13035 9271 0.45

/cake/categories/add_category 900 23710 12684 1.38 1200 18383 15139 1.64

/cake/posts/add_new_post 900 26090 13379 11.43 1200 20402 16470 11.02

/cake/posts/view_post/1 900 26793 13092 11.58 1200 21592 17215 9.98

/cake/posts/search 300 23298 8042 1.25 400 18283 12289 1.30

/cake/categories/view_category/1 300 19511 8318 1.48 400 16288 11983 1.53

/cake/users/logout 300 35428 14174 0.44 400 28532 21282 0.5

TOTAL 5100 55378 171059 38.34 6800 44137 160133 35.52

500 Users

600 Users

sampler_label count average Stddev Throughput count average Stddev Throughput

/cake/ 500 416510 542642 7.81 600 396800 559496 8.84

/cake/posts/about 500 15730 69126 1.61 600 13976 61585 1.87

/cake/users/login 1000 20503 69826 1.12 1200 18291 63171 1.26

/cake/users/dashboard 500 15216 67843 0.49 600 13555 63409 0.56

/cake/categories/add_category 1500 24293 104090 1.74 1800 17859 64505 1.91

/cake/posts/add_new_post 1500 25997 103555 11.21 1800 19416 62989 11.50

/cake/posts/view_post/1 1500 24002 79347 10.69 1800 22298 81517 9.73

/cake/posts/search 500 17385 12978 1.22 600 15596 13767 1.16

/cake/categories/view_category/1 500 21904 97000 1.47 600 16899 63769 1.57

/cake/users/logout 500 26205 20804 0.57 600 26397 67319 0.57

TOTAL 8500 45696 180434 35.36 10200 41090 174312 36.70

700 Users 800 Users

sampler_label count average Stddev Throughput count average Stddev Throughput

/cake/ 700 353666 571189 6.66 800 349035 610953 9.77

/cake/posts/about 700 12829 64410.86 1.57 800 12150 67001 1.83

/cake/users/login 1400 17194 65973 1.30 1600 16121 68284 1.41

/cake/users/dashboard 700 12935 64023.64 0.59 800 11790 66325 0.64

/cake/categories/add_category 2100 17695 74427.67 1.95 2400 16616 77176 2.11

/cake/posts/add_new_post 2100 17099 63278.22 9.19 2400 17982 67779 12.39

/cake/posts/view_post/1 2100 17812 64491.48 9.25 2400 20771 86002 12.18

/cake/posts/search 700 15740 63253.98 1.11 800 16530 66693 1.72

/cake/categories/view_category/1 700 15717 64417.77 1.34 800 12718 15317 1.59

/cake/users/logout 700 23192 66790.21 0.57 800 26475 97123 0.66

TOTAL 11900 36840 172125.3 31.57 13600 36885 182009 41.24

 40

 900 Users 1000 Users

sampler_label count Average Stddev Throughput count average Stddev Throughput

/cake/ 900 258511 492544 8.79 1000 272135 514392 7.22

/cake/posts/about 900 9596 53244 2.05 1000 13733 95423 1.92

/cake/users/login 1800 12956 54974 1.73 2000 13693 68881 1.66

/cake/users/dashboard 900 11371 72886 0.80 1000 12122 81385 0.78

/cake/categories/add_category 2700 12647 52870 2.57 3000 14106 73822 2.53

/cake/posts/add_new_post 2700 13090 53272 11.26 3000 14336 68632 11.12

/cake/posts/view_post/1 2700 14326 60954 11.21 3000 14471 63261 10.12

/cake/posts/search 900 12138 53838 1.367 1000 15013 80638 1.30

/cake/categories/view_category/1 900 9623 12514 1.70 1000 14175 82276 1.66

/cake/users/logout 900 18984 75618 0.79 1000 17507 52621 0.81

TOTAL 15300 27431 143571 39.73 17000 29459 155475 37.53

 1100 Users

sampler_label count average Stddev Throughput

/cake/ 1005 247658 496729 7.06

/cake/posts/about 1005 8914 50419 1.94

/cake/users/login 2010 11873 52142 1.83

/cake/users/dashboard 1005 9025 51111 0.86

/cake/categories/add_category 3015 12337 59634 2.73

/cake/posts/add_new_post 3015 12133 52212 10.25

/cake/posts/view_post/1 3015 13084 59321 10.19

/cake/posts/search 1005 11231 52104 1.30

/cake/categories/view_category/1 1005 11721 59113 1.61

/cake/users/logout 1005 17772 73431 0.87

TOTAL 17085 26043 143604 36.63

 Table 9.1: CakePHP Dataset for local server

 41

9.2.1.1.2 CodeIgniter Data Sets on local server

 100 Users 200 Users

sampler label count average Stddev Throughput count average Stddev Throughput

/CodeIgniter-blog/ 100 1383 1050 33.79 200 57567 69141 28.39

/CodeIgniter-

blog/about 100 272 341 12.38 200 7233 6338 9.62

/CodeIgniter-

blog/auth/login 200 527 694 3.86 400 7317 6148 1.82

/CodeIgniter-

blog/dashboard 100 367 423 1.79 200 6266 4962 0.83

/CodeIgniter-blog/add-

category 300 622 785 13.02 600 8549 7423 5.48

/CodeIgniter-blog/add-

new-post 300 634 799 49.94 600 8241 6890 43.60

/CodeIgniter-

blog/view_post/1 300 382 458 35.00 600 6640 4801 31.16

/CodeIgniter-

blog/blog/search 100 332 402 2.70 200 6287 4859 1.12

/CodeIgniter-

blog/category/as 100 493 504 14.73 200 7568 5696 13.84

/CodeIgniter-

blog/auth/logout 100 351 461 1.99 200 7697 6248 0.82

TOTAL 1700 539 703 161.83 3400 10443 21368 127.63

300 Users

400 Users

sampler_label count average Stddev Throughput count average Stddev Throughput

/CodeIgniter-blog/ 300 283601 249551 24.63 400 343100 328241 28.17

/CodeIgniter-

blog/about 300 10285 4563 8.39 400 12980 9009 9.27

/CodeIgniter-

blog/auth/login 600 12698 5476 1.06 800 12372 8845 1.14

/CodeIgniter-

blog/dashboard 300 12718 5248 0.50 400 12753 9333 0.53

/CodeIgniter-blog/add-

category 900 16993 9115 3.58 1200 15424 29682 3.56

/CodeIgniter-blog/add-

new-post 900 17519 18379 40.86 1200 16253 40719 44.95

/CodeIgniter-

blog/view_post/1 900 13370 4818 29.48 1200 12303 7027 31.75

/CodeIgniter-

blog/blog/search 300 11050 4222 0.73 400 14418 48685 0.73

/CodeIgniter-

blog/category/as 300 11761 4194 13.43 400 13830 8668 14.31

/CodeIgniter-

blog/auth/logout 300 13285 5197 0.54 400 14284 9429 0.58

TOTAL 5100 30102 88169 118.85 6800 33415 113838 128.98

500 Users

600 Users

sampler label sample average Stddev Throughput count average Stddev Throughput

/CodeIgniter-blog/ 500 274245 336429 26.66 600 264457 369512 25.27

/CodeIgniter-

blog/about 500 8424 6954 9.02 600 8848 8913 8.53

 42

/CodeIgniter-

blog/auth/login 1000 10194 8137 1.34 1200 9536 9352 1.49

/CodeIgniter-

blog/dashboard 500 10316 8185 0.64 600 8813 8610 0.71

/CodeIgniter-blog/add-

category 1500 13527 11983 3.75 1800 11827 12581 3.83

/CodeIgniter-blog/add-

new-post 1500 13886 12169 42.48 1800 12593 13099 40.54

/CodeIgniter-

blog/view_post/1 1500 10974 8331 30.82 1800 9586 8721 29.18

/CodeIgniter-

blog/blog/search 500 9025 6824 0.85 600 8842 8200 0.91

/CodeIgniter-

blog/category/as 500 9827 7354 13.94 600 9697 8898 13.22

/CodeIgniter-

blog/auth/logout 500 10815 8271 0.69 600 10572 10132 0.75

TOTAL 8500 26953 102817 126.51 10200 25431 108213 120.93

700 Users

800 Users

sampler_label Sample average Stddev Throughput sample average Stddev Throughput

/CodeIgniter-blog/ 700 311037 430933 25.26 800 248544 388879 25.93

/CodeIgniter-

blog/about 700 11512 43758 8.32 800 13117 63069 8.80

/CodeIgniter-

blog/auth/login 1400 11279 40939 1.41 1600 10361 51839 1.63

/CodeIgniter-

blog/dashboard 700 10471 43147 0.68 800 10111 49912 0.78

/CodeIgniter-blog/add-

category 2100 13264 48542 3.62 2400 13825 55504 3.95

/CodeIgniter-blog/add-

new-post 2100 13315 42234 40.86 2400 14144 55517 41.43

/CodeIgniter-

blog/view_post/1 2100 11616 43113 30.07 2400 11427 51576 31.99

/CodeIgniter-

blog/blog/search 700 12558 58100 0.86 800 10549 50671 0.98

/CodeIgniter-

blog/category/as 700 11202 10623 13.62 800 13743 71428 14.62

/CodeIgniter-

blog/auth/logout 700 14520 58427 0.71 800 10487 37146 0.79

TOTAL 11900 29909 133223 121.17 13600 26203 121548 126.56

900 Users

1000 Users

sampler label sample average Stddev Throughput Sample average Stddev Throughput

/CodeIgniter-blog/ 900 234792 383524 26.88 1000 213487 390668 23.43

/CodeIgniter-blog/about 900 9170 35740 9.09 1000 8750 49196 8.13

/CodeIgniter-blog/auth/login 1800 8916 36061 1.89 2000 8511 36294 2.04

/CodeIgniter-blog/dashboard 900 8398 34236 0.92 1000 8177 35419 0.99

/CodeIgniter-blog/add-

category 2700 10376 35458 4.38 3000 9974 35665 4.50

/CodeIgniter-blog/add-new-

post 2700 11389 39535 42.89 3000 10660 41083 38.98

/CodeIgniter-

blog/view_post/1 2700 8840 32155 31.54 3000 8955 35072 29.19

 43

/CodeIgniter-blog/blog/search 900 8298 31716 1.08 1000 8837 44789 1.16

/CodeIgniter-blog/category/as 900 9330 34681 14.29 1000 9644 48713 13.27

/CodeIgniter-blog/auth/logout 900 10292 34610 0.93 1000 10070 40926 1.00

TOTAL 15300 22937 112411 128.04 17000 21456 112915 118.63

1100 Users

sampler_label Sample average Stddev Throughput

/CodeIgniter-blog/ 1002 228904 399205 27.25

/CodeIgniter-blog/about 1002 8989 45737 9.209

/CodeIgniter-blog/auth/login 2004 9649 48217 1.81

/CodeIgniter-blog/dashboard 1002 9725 48228 0.87

/CodeIgniter-blog/add-

category 3006 11930 51277 4.15

/CodeIgniter-blog/add-new-

post 3006 12247 51353 43.19

/CodeIgniter-

blog/view_post/1 3006 10599 51744 33.54

/CodeIgniter-blog/blog/search 1002 12022 66960 1.08

/CodeIgniter-blog/category/as 1002 9401 33104 15.36

/CodeIgniter-blog/auth/logout 1002 11823 58222 0.89

TOTAL 17034 23793 120283 134.60

Table 9.2: CodeIgniter Dataset for local server

 44

9.2.1.2 Data Sets on live server

The following tables show the datasets on live testing.

9.2.1.2.1 CAKEPHP Data Sets on live server

 100 Users 200 Users

sampler label sample average Stddev Throughput Sample average Stddev Throughput

/ 100 2469 730 21.53 200 3718 1631 42.02

/posts/about 100 725 242 6.21 200 818 445 9.15

/users/login 300 756 284 7.92 600 894 498 7.59

/users/dashboard 100 576 128 2.49 200 656 295 2.42

/categories/add_category 300 782 297 9.92 600 965 533 9.64

/posts/add_new_post 300 1213 426 37.52 600 2025 1255 58.33

/posts/view_post/2 300 1258 465 44.75 600 2089 1478 64.13

/posts/search 100 758 189 6.06 200 1380 936 8.42

/categories/view_category/2 300 600 153 7.21 600 720 380 6.62

/users/logout 100 1191 236 3.41 200 1303 429 3.13

TOTAL 2000 977 553 128.13 4000 1398 1202 190.26

 300 Users 400 Users

sampler_label Sample average Stddev Throughput sample average Stddev Throughput

/ 300 4331 1922 63.58 400 6262 5344 79.23

/posts/about 300 973 537 12.10 400 1417 1303 14.12

/users/login 900 917 433 8.149 1200 1102 901 7.58

/users/dashboard 300 677 245 2.43 400 871 690 2.26

/categories/add_category 900 992 497 9.69 1200 1187 925 9.09

/posts/add_new_post 900 2341 1472 86.25 1200 3045 2428 105.27

/posts/view_post/2 900 2227 1375 96.05 1200 3191 2563 113.69

/posts/search 300 1560 907 11.79 400 2855 3472 13.63

/categories/view_category/2 900 716 285 6.99 1200 858 598 6.38

/users/logout 300 1394 414 3.30 400 1626 899 3.02

TOTAL 6000 1526 1324 279.78 8000 2059 2484 329.69

 500 Users 600 Users

sampler label Sample average Stddev Throughput sample average Stddev Throughput

/ 500 8295 6680 89.20 600 12494 10762 91.46

/posts/about 500 3111 3479 15.46 600 4758 6461 15.99

/users/login 1500 2071 2578 7.30 1791 3535 5679 6.74

/users/dashboard 500 1524 2002 2.43 600 2847 3907 2.18

/categories/add_category 1500 2065 2435 9.14 1798 4302 8948 6.74

/posts/add_new_post 1500 4655 4479 93.75 1793 8649 10667 89.26

/posts/view_post/2 1500 4491 4367 87.76 1791 8856 9116 112.26

/posts/search 500 4018 4705 10.41 597 6811 6868 12.21

/categories/view_category/2 1500 2338 3406 6.29 1790 3733 11305 5.33

/users/logout 500 3170 3621 2.74 593 5202 13049.25 2.42

TOTAL 10000 3349 4100 285.25 11953 5967 9600.41 297.20

Table 9.3: CakePHP Dataset on live server

 45

9.2.1.2.2 CodeIgniter Data Sets on live server

 100 Users 200 Users

sampler label count average Stddev Throughput count average Stddev Throughput

/ 100 2960 1335 32.39 200 6131 2688 143.36

/about 100 864 208 12.319 200 1274 989 46.08

/auth/login 200 498 173 3.916 400 520 179 4.18

/auth 100 486 78 1.84 200 508 211 1.95

/add-new-category 300 699 298 13.29 600 754 488 14.07

/add-new-entry 300 1074 463 51.75 600 1970 1763 188.76

/post/102 300 1094 486 64.05 600 2289 2133 232.19

/blog/search 100 514 138 6.75 200 1047 930 18.23

/category/cate 300 657 401 46.99 600 2123 1916 169.29

/auth/logout 100 476 56 1.98 200 520 211 1.92

TOTAL 1900 888 710 208.40 3800 1680 1976 714.77

 300 Users 400 Users

sampler_label count average Stddev Throughput count average Stddev Throughput

/ 300 4814 2157 107.25 400 9369 10986 123.16

/about 300 1201 1402 34.70 400 2531 4141 39.62

/auth/login 600 532 398 4.14 800 701 1029 3.61

/auth 300 520 258 1.93 400 623 589 1.68

/add-new-category 900 732 397 14.13 1200 1046 1237 12.23

/add-new-entry 900 1614 1600 149.40 1200 4391 7191 166.98

/post/102 900 1812 1544 185.95 1200 4483 7612 212.05

/blog/search 300 865 883 14.95 400 1648 2495 16.43

/category/cate 900 1430 1254 139.74 1200 3264 5470 162.25

/auth/logout 300 492 94 2.09 400 635 657 1.79

TOTAL 5700 1354 1536 615.23 7600 2935 5888 695.47

 500 Users 600 Users

sampler label count average Stddev Throughput count average Stddev Throughput

/ 500 14207 16212 147.63 600 70951 210265 26.89

/about 500 4120 5492 48.02 598 38444 233617 9.87

/auth/login 1000 768 835 3.52 1189 4976 109658 0.66

/auth 500 675 525 1.64 594 1517 3052 0.96

/add-new-category 1500 1216 1160 11.89 1780 4338 75274 2.18

/add-new-entry 1500 6933 7624 202.83 1775 30064 130770 43.39

/post/102 1500 7871 9318 251.02 1767 35841 128782 57.97

/blog/search 500 3613 11528 19.09 587 8897 15480 12.67

/category/cate 1500 6279 5966 200.51 1756 28255 143178 49.86

/auth/logout 500 713 626 1.69 583 1476 3247 0.96

TOTAL 9500 4830 8004 833.73 11229 22486 127650 195.65
Table 9.4: CodeIgniter Dataset for live server

 46

9.3 T-testing

9.3.1 T-testing on local server

9.3.1.1 T-test on response time of CAKEPHP and CodeIgniter

t-Test: Two-Sample Assuming Unequal Variances

Average Response time
CAKEPHP (sec)

 Average Response time
CodeIgniter (sec)

Mean 36.43 22.71

Standard Deviation 11.89 10.02

Observations 10 10

t Stat 2.78
 T critical one tail level of

significance = 0.05 1.73
 t Critical one-tail with Level of

significance 0.01 2.56
 T critical one tail level of

significance = 0.001 3.64
 Table 9.5: T-Test of CakePHP and CodeIgniter on local server

9.3.1.2 T-test on throughput of CAKEPHP and CodeIgniter

 Throughput CakePHP (kb/sec)
Throughput

CodeIgniter(kb/sec)

Mean 37.46 127.87

Standard Deviation 2.84 12.55

Observations 10 10

t Stat -22.20
 t Critical one-tail with Level of

significance = 0.05 1.81
 t Critical one-tail with Level of

significance = 0.01 2.76

t Critical one-tail with Level of
significance = 0.001 4.14

Table9.6: T-Test on Throughput of CakePHP and CodeIgniter on local server

 47

9.3.2 T-testing on live server

9.3.2.1 T-test on response time of CAKEPHP and CodeIgniter

t-Test: Two-Sample Assuming Unequal Variances

 average CakePHP (sec)
average

CodeIgniter (sec)

Mean 1.8 2.28

Standard Deviation 0.92 1.60

Observations 5 5

t Stat -0.57
 t Critical one-tail with Level of

significance = 0.05 1.94
 t Critical one-tail with Level of

significance = 0.01 3.14

01t Critical one-tail with Level of
significance = 0.001 5.20

Table 9.7: T-Test of CakePHP and CodeIgniter on live server

9.3.2.2 T-test on throughput of CAKEPHP and CodeIgniter

t-Test: Two-Sample Assuming Unequal Variances

 Throughput CakePHP
Throughput
CodeIgniter

Mean 242.56 613.48

Standard Deviation 81.57 239.55

Observations 5 5

t Stat -3.27

t Critical one-tail with Level of
significance = 0.05 2.01

t Critical one-tail with Level of
significance = 0.01 3.36

t Critical one-tail with Level of
significance = 0.001 5.89

Table 9.8: T-Test of CakePHP and CodeIgniter on live server

